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Abstract

In the last two decades, many approximations for the P-
P reflection coefficient have been proposed in the litera-
ture. Almost derived from the cassical aproximation of Aki
& Richards, using additional assumptions on the medium
parameters. The aim of constructing such aproximations
is to establish reliable attributes that can be capable to in-
dicate the presence of oil or gas in rocks. In this work we
introduce a new indicator, based on an impedance-type ap-
proximation for the reflection coefficent. Such indicator also
provides the Lamé parameter λ without invertion.

Introduction

The variation of amplitude with offset (AVO) is a powerful
tool to discriminate rocks containing gas and oil. Several
approximation of the P–P reflection coefficient (R) have
been proposed and different AVO indicators were extracted
from them. However, there is no agreement about which is
the best attribute and in which situation it would be better
applied. The starting point of almost all the approaches is
the classic approximation of Aki & Richards (1980), which
is based on a weak constrat in the media parameters and
small angle of incidence. Recently, impedance-type ap-
proximations for the reflection coefficient have been intro-
duced (Connolly, 1999 and Santos & Tygel, 2004). Based
on this kind of approximation we introduce a new indicator.
Numerical examples demonstrate the ability of this attribute
to discriminates gas and oil in sands. Also, we wrote the
reflectivity (R) as a function of Lamé parameters (λ and µ)
and density. For a especific angle of incidence, R is equal
to the λ reflectivity, so is possible to extract λ directly from
this new paremeter.

Aproximation for R and the associated seismic
attributes

Let us consider two semi-infinite isotropic homogeneous
elastic media in contact at a plane interface. Each medium
has a P-wave velocity α, a S-wave velocity β and a density
ρ. Further, let us consider an incident compressional plane
wave impinging upon this interface. The reflection coeffi-
cient R for a compressional reflected wave has an exact
expression knowing as Zooeptriz-Knott formula. This for-
mula is very hard to handle and it is difficult to extract the
physical sense of their terms.

For a small contrast between the properties of the two me-

dia and a small angle of incidence, the well known linear
approximation of Aki & Richards (1980) is given by
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where θ is the incident angle and u = (u2 + u1)/2, ∆u =
u2 − u1 for u = α, β, and ρ.

Shuey (1985) rewrote the expression equation (1) as a
function of θ,

R ≈ A + B sin2 θ + C[tan2 θ − sin2 θ], (2)

where the parameters A (Intercept), B (Gradient) and C
are given by
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Shuey had shown that for incidence angles smaller than
30◦, tan2 θ ≈ sin2 θ and then, equation (2) turns to be

R ≈ A + B sin2 θ . (4)

Equation (4) is the most popular AVO formula. Castagna
&Smith (1994) presented a large study using A and B,
A × B and (A + B)/2 as a AVO indicators. In that work
they have shown that the difference between the normal
incidence P-P and S-S reflection coefficients can be well
approximated by (A + B)/2. Moreover, it is also a robust
indicator for clastic section to separate brine sands to gas
sands, as shown in Figure 1 (left). However, for some of
their suite of 25 measurements of the Gulf of Mexico and
Gulf Coast, this indicator failed.

Smith and Gidlow (1987) used Gardner’s relationship, ρ =
α1/4 (Gardner et al,1974), for water-saturated rocks to ob-
tain other approximation for R
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Using the mudrock line of Castagna et al (1985),

α = 1.36 + 1.16 β (in km/s) , (6)

which relates the P- and S-wave velocities for water-
saturated sandstones, siltstones and shales, Smith and
Gidlow (1987) defined the “fluid factor” indicator ∆F as

∆F =
∆α

α
− 1.16

β

α

∆β

β
, (7)
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where the α and β contrast can be estimated from equa-
tion (5). The second term in the fluid factor is the value of
∆α/α predicted from ∆β/β using the mudrock line. So ∆F
will be close to zero for water-bearing and shales rocks and
nonzero for other type of rocks or fillings. Figure 1 (right)
shows the behavior of the fluid factor for the same types of
interfaces and the same data used previously.

Following the simple cases of normal incidence in elastic
media and general oblique incidence in acoustic media,
two new approaches had appeared recently in the litera-
ture (Connolly, 1999, Santos & Tygel,2004). The idea is to
write the reflection coefficient as a function of a “angular”
impedance,

R ≈
I2 − I1

I2 + I1

, (8)

where I1 refers to the incident side and I2 to the transmis-
sion side.

Connolly (1999) introduced the elastic impedance, I = EI,

EI = N0 αsec
2 θ β−8K sin

2 θρ1−4K sin
2 θ, (9)

where K = β2/α2 is assumed constant, and N0 is a nor-
malization constant (Whitcombe, 2002). In the derivation
of EI, the angle θ was considered constant in both side of
the interface, which is not true in a physical sense.
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Figure 1. Separation between shale over gassand (+)
and shale over brinesand(o). Left: Average of slope(A)

and gradient (B). Right: Fluid Factor.
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Figure 2. Separation between shale over gassand (+)
and shale over brinesand(o). Left: J fator using elastic
impedance. Right: J fator using reflection impedance.

Santos & Tygel (2004) has shown that no exact closed-
form solution for equation (8) exists. However, under suit-
able restrictions in the medium parameters (e.g., ρ = bβγ),

they introduce the reflection impedance, I = RI,

RI = M0

ρα
√

1 − α2p2

exp{−4p2[β2 + f(β)]} , (10)

where M0 is a normalization constant, p is the ray parame-
ter, and f is a function, wich is obtained considering a func-
tional relation between ρ and β. For the case ρ = βγ , γ

2
β2.

It is important to note that in the derivation of RI, p was
considered constant on both sides of the reflector,which fol-
lows the actual phisics of the ray.

For any choice of the impedance, I = EI or I = RI, from
equation( 8), it is possible to define a new atribute J

J =
I1

I2

≈
1 − R

1 + R
. (11)

Clearly, such indicator depends on the angle of incidence.
Figure 2 shows the behavior of J for elastic and reflection
impedance, taking θ = 30◦. We can observe that this new
attribute separates well gas sand from brine sand for al-
most the 25 models presented.

Extracting λ from R

Fundamental rock properties such as Lamé parameter or
module of Poisson are better understood than velocities
or impedances, so is desirable to get it from the data. In
that direction, Whitcombe et al (2002) define a new func-
tion called extended elastic imepdance. From this function
they obtain λ, µ and κ, assuming the ratio β2/α2 and A/C
in equations (1) and (2) are constant .

Our work follows this idea to obtain the Lamé parameters
but trying to be a little more general. To obtain λ, directly
we rewrote the equation(1) in function of λ, µ, ρ and θ.
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where K = (β/α)2.

We can observe that if we fixed the incidence angle θ in
45◦ before solving, equation (12) remains

R = (1 − 2K)
1

2

∆λ

λ
. (13)

Like R is approximatly ∆I/2I (Santos & Tygel, 2004) and
considering K constant we can combine equation (11) and
(13) to get

J(45◦) ≈
(

λ1

λ2

)1−2K

= rλ (14)

Thus, sorting the data for angles and searching the section
of θ = 45◦ we can obtain λ carrying just one invertion for
J .
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Numerical Experiments

To test the validity of our approximation (equation 14) we
used synthetic well logs (Figura 3). The correlation be-
tween the elastic parameter(rλ) and J(45) was ≥ 0.98 for
the whole well. The two curves are almost indistinguish-
able (Figure 4). This high correlation can be seen in detail
in Figure 5.
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Figure 3. Synthetic well logs.
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Figure 4. Comparison of a (λ1/λ2)
1−2k curve

with a J(45◦) curve for the entire synthetic well log.

Using the two different approaches for J , the elastic or the
reflection impedance, we will also have two different ap-
proaches for rλ. In Figure 6 we can see that JRI fits better
rλ.

In our deduction we consider that K is constant but this
is not true, however J(45◦) was a good aproximation for
rλ. To test how the value of K (left constant) affect the
good correlation between J and rλ we disturbed the well
log data (multiplying α or β for a constant). We computed
the correlation for θ = 45, the resalt is in Table 1. We
can observe that the correlation remanins high. Howewer,
in same cases, the highest correlation happened for other

angles. We are investigating which was the cause.

K corr
2α 0.05 0.99

1.2α 0.15 0.99
α 0.22 0.98

0.9α 0.24 0.97
0.95α 0.27 0.94
0.8α 0.34 0.85
1.2β 0.32 0.92
1.5β 0.49 0.85

Table 1. In this table we can see the correlation
between J(45◦) and r1−2K

λ , for different K.
The value of correlation is quite high.
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Figure 5. A zoom of Figure 4.
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Figure 6. Comparison of a (λ1/λ2)
1−2k curve

with a JEI(45
◦) curve and a JRI (45

◦) curve.

Now we will introduced an experimental relationship be-
tween the Poisson relation, that it is known as a fluid indi-
cator, and a kind of near-far relation with JRI. From Figure
7 we observe that JRI(40◦)/JRI(5◦) fits rσ = σ1/σ2 quite
well for the whole well. The correlation between both was
0.94. A detail is observed in Figure 8.

Conclusions

We presented a new seismic parameter J that is obtained
directly from the data through the reflection coefficient. It
allows to separate gas from brine sand for one interface.
Furthermore, it is possible to extract the λ parameter and
the Poisson relationship from it. We hope to be able to
obtain other parameters such as compressibility or shear
rigidity to get a complete set physical parameters.
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Figure 7. Comparison of a σ1/σ2 curve
with JRI(40

◦)/JRI (5
◦) curve.
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Figure 8. A zoom of Figure 7.
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