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Abstract 
 
The reevaluation of mature or small oil fields, where 

there are only conventional well log data or the use of 
new logging technologies have not economic viability 
motivate us to take a new look in log vertical resolution 
enhancement. We talk about the paradox between depth 
of investigation and the vertical resolution of a logging 
tool. 

This work aims to improve the vertical resolution and 
keep the depth of investigation unchanged by the 
development of an iterative block processing based on 
recurrent neural networks. From the convolutional well log 
model we introduce a method to smoothing the linear 
disturbances introduced by the tool in the well log and 
improve the log vertical resolution. The block processing 
is based on three recurrent neural network architectures. 
The first one seeks to estimate the vertical tool response; 
the second one tries to determine the vertical limits of 
layers and the last one is constructed to estimate the 
actual physical property.  

The efficiency and limitations of this methodology are 
exemplified with one gamma ray log from a well drilled in 
Namorado oil field, Campos basin, Brazil. 
 
Introduction 

 
For oil industry, wireline logging is the major technique 

to infer the occurrence and evaluate hydrocarbon bearing 
rocks. It is done by the measure and interpretation of 
physical properties of rocks surrounding the borehole. 
These measures are acquired by a logging tool containing 
one or several sensors that is pulled up hole on a cable. 
The signal obtained in each measure point can be 
considered as a weight average of the physical property 
on the whole rock volume investigated by the logging tool 
(Ellis, 1987). Thus, the logging tool contaminates the 
value of a rock physical property, in a measure point, with 
undesirable information from its neighborhood.  

Well log can be modeled by a convolution operation 
between the vertical variation of rock physical property 
(ideal log) and a function that describes the blurring 
caused by the logging tool in this property (vertical tool 
response).  One way to improve the log vertical resolution 
is to use the convolution inverse operation – The 
deconvolution. As we talk about linear operations, only 
this kind of events may be removed from actual well logs. 

Some authors try to solve these kind of problems with 
different methodologies: statistical methods (Nosal, 1983; 
Flexa and others, 2001), digital filters and Fourier 

transform (Barber, 1988; Andrade & Luthi, 1993), artificial 
intelligence (Baldwin and others, 1989) and Hopfield 
neural network (Andrade and others, 1995). Many papers 
have been published showing the applicability of artificial 
neural networks in the oil industry, involved in a larger 
class of intelligent algorithms, e.g. soft computing 
(Nikravesh, 2004) and interpretative algorithms (Fischetti 
& Andrade, 2002).  

In the sense of artificial neural networks we present 
one association between the energy function, related to 
recurrent neural networks and the object function of error 
minimization, related to well log deconvolution problem. 
So, the decreasing behavior of the energy function 
produced by network dynamic is associated with the 
minimization of error function. Using recurrent neural 
networks, the error function partial derivates are avoided 
and we show that limitation of energy function local 
minimization does not introduce additional problems in 
this application. 

We develop an iterative block processing composed 
by three recurrent neural networks. The first one looks for 
an improvement in the estimative of vertical tool 
response; this result makes possible the next two steps. 
In the second neural network, we establish the 
subsurface disposition of each rock layer, with the 
identification of its interfaces (top and bottom of layer). In 
the last one, we establish the tool effect attenuation on 
the rock physical property magnitude.  

The final results show improvements in the log vertical 
resolution and in the physical property evaluation, with 
improvement of signal/noise ratio and in the time 
processing of well log data.  

The efficiency and limitations of this methodology are 
evaluated with synthetic logs and actual natural gamma 
ray log (GR) from Namorado oil field, Campos basin, 
Brazil. 

 
Recurrent neural network 
 

Recurrent neural network is a special class of 
unsupervised artificial neural networks. It is composed by 
only one layer of recurrent neurons, which after an initial 
input signal produces an output signal that is send back, 
as new input signal, for all neurons in the recurrent layer 
(Figure 1). This dynamic process is controlled by a 
decreasing behavior of an energy function, which 
depends on the states of recurrent neurons in each time 
step. Thus, a network stable state corresponds to a local 
minimum of energy function (Hopfield, 1982). In this 
characteristic resides the interest in the use of a recurrent 
neural network to solve an optimization problem. If we 
can associate a problem dependent cost function with the 
energy function, when the recurrent neural network 
reaches its stable state, the outputs of the network give 
the solution of the optimization problem.  
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Figure 1: Recurrent neural network architecture. 
 

 
To build a recurrent neural network, we define the 

input potential Pk to the neuron k  as 
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where iv  represents the state (output signal) of neuron i  
in the time t  and kiw  is the synaptic weights that 

represents the connections to neuron k  of all other 
neurons. The matrix W has the following properties: 

ikki ww =  and 0≥kkw , showed here without proof.  
The input potential represents the influence of all 

other neurons in the neuron k output. Under this point of 
view, the expression “potential” refers only the capacity of 
a neuron to produce an effective output (non zero) signal.  

We take as recurrent neuron activation function the 
following expression 
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This formulation for the activation function ( )[ ]( )tPf k  

differs from that one adopted in the Hopfield neural 
network, due the presence of parameter Ik, designated as 
external input, which determines the new neuron state 
( )kv  in the time t , as shown in Figure 2. 

We adopt as energy function a variation form of 
classical recurrent neural network, written as 
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The energy function variation E∆ associated with the 
network dynamic, due the state change of only one 
neuron in each time instant, is always smaller or equal to 

zero, assuring the convergence to a local minimum of 
energy function. 
 
 
 

 
 
 
 
 
 
 
 
 
 

    Figure 2. Recurrent neural  network activation function. 
 

 
Log convolutional model 

 
       We describe a well log by the convolutional model, in 
the following form 
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where ky  represents the log readings, kp  is the physical 
property distribution, considered constant in each 
infinitesimal element of rock volume investigated by the 
logging tool, and kg  is the vertical tool response.  

 
Methodology 

 The fundamental premise adopted here is the 
association between the network energy function and an 
error function, characteristic of the problem. Through this 
association the matrix of synaptic weights and the vector 
of external inputs are determined and will be used in the 
recurrent neural network to improve the log vertical 
resolution. 
 The goal here is to solve the expression (4) in the 
sense of its inverse operation. So, we want to find the 
actual values for kp , but we do not know the kg  values. 
To overcome this indetermination and to start the 
process, we supply a first guess about the ideal log, 
which may be weakly related to actual log and will be 
used to provide an external estimative of vertical tool 
response. We take two approaches: (1) the boxcar log 
and (2) a well log with higher vertical resolution than the 
one we are processing. We discuss each case 
separately, in the next paragraphs. 
 The assumption of homogeneous material (lithology) 
in each rock layer, admitted in the convolutional model, 
induced the association of the ideal log with the boxcar 
function, originating the boxcar log or a synthetic log that 
exhibits a uniform value for the physical property in each 
rock layer. The algorithm that constructs the boxcar log is 
based on a move average and a threshold. To decide if a 
depth point belongs to a given layer, the difference 
between the arithmetic medians of actual log readings, 
including and excluding this particular point is compared 
to a threshold. If the difference is less than threshold, the 
point belongs to this layer, if opposite occurs, an interface 
is reached. The boxcar log is built analyzing each point in 
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the well log. If the boxcar log is constructed from a noise 
free synthetic log it may be very close to this log, but 
when actual well log is used, a weakly relation may exist 
between the boxcar log and the in depth variation of rock 
physical property.  
 In the second case, we can use as a first guess about 
the ideal log another well log, with higher vertical 
resolution than processed one, measured in the same 
depth interval, to take advantage of its better interface 
definition. In both case, they have the same role in the 
block processing, which is to start the process.  
 In a complex geological setting, the boxcar log 
produces a hard restriction requiring a homogeneous rock 
and the log with high resolution may be more 
appropriated to get more reliable interfaces positions.     
 In the next sections, we show how the free 
parameters of each neural network are obtained to 
operate in the block processing until a specified error goal 
to be reached.      

 
The vertical tool response estimative 
 

The characteristic error function is taken as the error 
minimization function, which is represented by the sum of 
squared errors, given as 
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where ky′  is the log obtained by the convolutional model 
showed in the expression (4) and ky  is the measured 

well log. Assuming 0≠ig  and 0≠ip  ∀  i > 0, in 
expression (4), the expression (5) can be rewritten as 
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The vertical tool response is obtained in two stages.   

The first one is the acquisition of its external estimative 
( )ext

ig  based on the concept of point spread function 
(PSF) (Andrade & Luthi, 1993). The recurrent neural 
network is constructed to obtain a correction for extg  as 
output. Thus, the vertical tool response (grec) is written as 
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The term ig ′  can be normalized to 1≤′ig , acting as a 

weight correction of external estimative of vertical tool 

response ( est
ig ) and expressed by,  
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where ijx  assumes values in {0, 1}. The expression (8) 

can be understood as a binary vector decoding with M 
bits. 

Substituting the expression (7) in the expression (6), 
and ignoring the terms not depend on ijx , we have for the 

energy function, the following expression  
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Associating the equation (9) with equation (3), we 

have the network synaptic weight matrix, given by 
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and the external input vector as 
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Here, the time serie that describes the vertical tool 

response does not have any physical meaning, being just 
a processing element, necessary to start the block 
processing. 
 
The interface identification 

 
To identify the presence of an interface, we rewrite the 

sequence ip , in the expression (4) as 
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where ic  represents the physical property value in the 
layer i . The sequence ∈ir  {0,1} can be deterministic or 
aleatory, in a way that if 1=ir , we meet an interface with 

amplitude given by 
2

11 +− + ii cc
 and if 0=ir , we meet a 

layer considered homogeneous and isotropic, presenting 
a constant physical property with amplitude equal to .ic  

Substituting in the expression (6) the value of ip  
supplied for the expression (12) and ignoring the terms 
not depending of ,ir  we obtain the cost function 
expressed by 
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where the terms ih and jh are written as 
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Associating the expressions (3) and (13) we obtain 
the network weight matrix elements, as 
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and the external input vector given by 
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The expressions (14) and (15) describe a recurrent 

neural network to determine each interface depth. A post 
processing calculates the thickness of each layer.  

 
 

The physical property magnitude estimative 
 
For it layer as defined above we consider constant the 

physical property. From the first estimative of ideal log 
( est

ip ), the actual physical property distribution ( rec
ip ) is 

showed by the following expression  
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and ip′  is given by  
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where ijx  represents the neuron outputs in the set {0, 1}. 

Substituting the expression (16) in the expression (6), 
ignoring the terms not depending of ijx and considering 

the punctual minimization, the rec
ip  value releases the 

sum in k  and we obtain the following expression for the 
cost function 
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and the external input vector is given by 
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    With these expressions, we finished the mapping of 
well log deconvolution problem in the recurrent neural 
network environment. 

 
Results 

 
Now, we present an application with actual well log 

data from one borehole drilled in Namorado oil field, 
Campos basin, Brazil. 

In Figure 3-A, we show the natural gamma ray log 
(black) and the processed log by neural network (blue). 
We observe the difference between the property value 
measured by the tool and the recovered value. For some 
log intervals we obtain GR values larger than the 
measured one; the inverse is also detected for other 
intervals, but in all logged depth interval the processed 
log shows a better vertical resolution than original GR log. 
This happens due the smoothing in the vertical tool 
response approximation, done by recurrent neural 
network. The core showed in Figure 3-B confirms the 
obtained results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Associating the expression (18) with the expression 

(3), we have the synaptic weight matrix elements as 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 3. A - The natural gamma ray log (GR) (black) and 
the processed log (blue). B – Core 
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          Figure 4. A – The natural gamma ray log (GR).  B – The density log. C – The GR log (blue) and the processed log 
(green). 
 

 
 
As the GR log exhibits a behavior suggesting a 

complex depositional setting, we show in Figure 4 the 
processing GR log with the density log (Rhob) used as 
the first guess about the ideal log.  Figure 4-A shows the 
actual GR log and Figure 4-B shows the density log. In 
Figure 4-C, we can observe the differences between the 
physical property measured by the tool and the recovered 
values. 

With this improvement in the data quality, we can 
obtain more realists rock property values in subsurface, 
improving the reservoir evaluation. 
 
Conclusions 
 
We presented a new look in the well log deconvolution 
problem introducing a particular recurrent neural network, 
which has intrinsic characteristics that improve the 
solution and reduce the computational time processing. 
Nowadays, this problem has been great attention of 
South America oil industry for the reevaluation of well logs 
in old oil fields.       
Its application for actual well log data, showed efficiency 
for the lithologic logs, as natural gamma ray log, but its 
application is not restrict for this kind of well log, once 
none premise was done about the physical property to be 
processed. It means that this methodology is able to be 
applied for any kind of conventional well log. Particularly 
for natural gamma ray log, this method shows 
improvement in data quality and produced good values 
for shale volume, the principal utilization of the gamma 
ray log in formation evaluation.    
This method opens the possibility of an autonomous 
information obtained from well log data and the search for 
the best subsurface representation at a low cost and 
computational effort.  
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