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Abstract  

The electromagnetic induction well log method is one of 
the more utilized geophysical logs in oil industry, aiming 
to obtain petrophysical informations regarding geological 
formations along the well. Although there are some new 
and advanced induction tools, as Phasor and Array Induc-
tion Tool, in this work we used some classical SCHLUM-
BERGER tools, as 2C40, ILD and 6FF40, with the objec-
tive of testing new algorithms, which can show a better 
way to interpret complex geological media. With this aim, 
we use the integral equation numerical method, which 
has been applied successfully with other geophysical 
techniques. In our specific case, these results were com-
pared to the response of models that were simulated with 
the numerical algorithm of finite differences and, subs e-
quently, were applied in the evaluation of responses of 
three-dimensional heterogeneities in well common three-
dimensional environments, as invasion front, fractures, 
etc. 

Introduction 
 
The electromagnetic well induction logging was 
developed in the late 40’s in order to measure the electric 
conductivity (σ) of the layers in resistivity muds wells.  Its 
inverse, the electric resistivity (ρ=1/σ), is one of the most 
important parameters used to measure the production 
potential of a well, either oil or gas.  These parameters 
are used in order to avaluate some petrophysical 
properties as water saturation, invasion front and 
resistivity anisotropy in slant wells. 
To understand the wellbore responses during the electric 
resistivity measurements, computer numerical simulations 
are generally used. These simulations, when made in one 
or bidimensional way, help to understand many situations, 
as drilling mud invasion or fall formations in the well, and , 
this kind of simulations must be done three-dimensionally 
(3D) to get a better approximation of the reality.  
Simulations of geologic enviroments were made using the 
3D scheme and some numerical techniques as finite 
element, finite differences, integral equation or hibrid 
methods (ANDERSON & BARBER, 1988). In this work, 
we used the integral equation method, which includes the 
primary field calculation (1D stratified layers) and the 
discretization in cells of the secondary field (3D body).  
This method were used for different induction 
arragements. 

Methodogy 
 
Geophysical logging plays an important role in petroleum 
exploration, mainly in the characterization petrophysiical 
characteristics of reservoirs, because of  their low cost 
and the important information offered from the rock 
formations. 
In our study we use the 2C40, 6FF40 and ILD (Induction 
Log Deep) arrangements, all of them from the 
SCHLUMBERGER company. Nowadays, there are in the 
industry anothers probes with better resolution and 
deeper investigation characteristics, as the Array 
Induction Tool or Phasor, but in this work the use of 
classical tools is justified as a way to test new algorithms, 
which can help in the interpretation of 3D geological 
enviroments. 
The first step of our work was to develop the 1D forward 
algorithm, which constitutes the rest rock of the 3D 
heterogeneities. This kind of solution is based on the 
exact response of the Green problem, that is, the 
determination of the electromagnetic field inside a 
stratified medium. Thus, the source of a classical 
induction probe is composed by a magnetic dipole and 
the measure is along the well axis. If we work in a 
cilindrical coordinate system, the magnetic potential 
vector takes part of the Helmholtz equation as:   

022 =+∇ zz FkF                         (1) 
and the electric field is given by:  

FE ×−∇= .                              (2) 
Also, the components of the electric fields are: 
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Near the source, the potential vector Fz of the magnetic 
dipole is: 
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Finally, to solve the Equation (1), we will obtain the 
response in the following general form: 
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In this expression, am and b m are constants, z  is the 
vertical coordinate, λ is the integration variable, βm is the 
propagation constant and Jo is the Bessel  function of first 
kind and zero order.  The am e bm values take different 
forms according  with the relative positions of the 
transmissor and receptor for each layer considered. 
To obtain the electromagnetical response of a 3D body, 
the integral equation scheme is used introducing the 
scattering current concept into the formulation. The elec-
tric field may be solved using the appropriate Green func-
tions (HOHMANN, 1971). 
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The integral equation technique considers only the 
discretization of  the non-homogeneus part, which permit 
to use less memory and reduces the computation time. 
For this reason, it is considered the best numerical 
method to solve 3D electromagnetic problems in the case 
of small and concentrated heterogeneities 
(CARRASQUILLA, 1993). 
Considering a 3D body and the Maxwell Equations, using 
MKS units (e iwt  time dependent), these ca be expressed 
in the following form:  

iMHzE +=×∇− ˆ ,                            (6) 

iJEyH +=×∇ ˆ ,                              (7) 

where Mi and Ji are the magnetic and electric currents, 
and ẑ  and ŷ are the impeditivity and admitivity.  These 

expressions are given by ωµiz =ˆ and ωεσ iy +=ˆ , re-
spectively. 
HARRINGTON (1968) showed that using an integral 
equation, the electric field can be formulated as: 

iS JJEH ++=×∇ 1σ ,                       (8) 
where: Js is the scattering current of the body ( Js = (s 2 – 
s1)E ). s2  and s1 are the heterogeneity conductivity and 
the conductivity of the medium, respectively. 
Taking the rotational of Equation (7) and replacing ∇ x H, 
we obtain an heterogeneous vector:  

iiS MJJiEkE ×∇−+−=−×∇×∇ )(0
2 ωµ ,     (9) 

where 00
22 εµω=k  is the propagation constant.  Also: 

E = Ei + Es ,                                 (10) 

where Ei and Es represent the incident and scattering field 
respectively, which satisfies the following equations: 

  iiii MJiEkE ×∇−−=−×∇×∇ 0
2 ωµ           (11) 

SSS JiEkE 0
2 ωµ−=−×∇×∇ .                 (12) 

The solution of the Equation (11) corresponds to the 
electric fields of the sources. On the other hand, to solve 
the Equation (12), we considered Js as an ordinary 
source. So, multiplying with the appropriated dyadic func-
tion and making an integration around the heterogeneity, 
we have: 

∫=
V
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where G(r,r’) is the dyadic Green function of the electric 
field at r for an element current, having as reference an-
other current point at r’ , at the interface earth-air. G is 
expressed by VAN BLADEL (1961) apud (HOHMANN, 
1975) as: 
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where g is the dyadic identity and G is a Green scalar 
function.  The expression for all the space is given by:    
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where 'rrR −=  and 21
11 )( σωµ oik −= . Replacing Js into 

the Equation (13), the expression results in: 
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This equation is known as the second order integral of 
Fredholm, singular and heterogeneous, with the electric 
field solved inside the body (HOHMANN, 1975). So, we 
approximate the integral equation setting the body as 
small cubic cells with ? of dimension. Then, we have a 
finite summation for every field in each sub cell at n: 
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where: 

• E(r) is the total electric field, 

• Ei(r) is the primary electric field of the surrounding 
medium, calculated for every SCHLUMBERGER 
probe,   

• )',(ˆ rrG  is the dyadic Green function which relates 
the electric field at r with a current element at r’, 

• En is the total electric field discretized in n cubic 
cells, 

• (s2 – s1) is the difference of conductivities between 
the heterogeneous body and the surrounding me-
dium, 

• dV is the differential function of the dyadic Green 
expression. 

Equation (17) can be modified depending on the base 
function chosen to represent ?sE (also named as Js).  
The easiest form to do this, is dividing the body into N 
cells, using a base function (XIONG, 1999): 
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where G is the dyadic Green function for a cubic element 
of volume.  From Equation (18) we can express the elec-
tric field for each cell as: 
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mnδ  is the Kronecker delta, and T is the tensorial unit.  

This expression can be written as: 
[ ][ ] [ ]nS EJ =Γ  .                            (21) 
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Usually, the coefficient matrix G of Equation (21) is re-
ferred as scattering matrix (XIONG, 1999). To solve it, we 
considered each cell coupled using the Green function 
and composed by a primary and scattering component. 
  
RESULTS AND INTERPRETATION 

Firstly, in order to test our 1D program, we consider a 
group of models studied by ROJAS (1995) in his doctor-
ate thesis. One of these models is composed by a se-
quence of 27 layers known as Oklahoma Formation 
(Unites States), which is used as a benchmark in the 
petroleum industry.  Figure 1 shows the apparent resistivi-
ties calculated by the ILD, 2C40 and 6FF40 probes, be-
sides the ROJAS (1995) results for the 6FF40 probe.  
Evaluating these responses, we found similarities among 
them. We also test our 1D algorithm with a model found in 
the master degree thesis of VIERA (1990), who used the 
ANDERSON & CHANG (1982) algorithm. He calculated 
the 2C40 response for a model composed by two layers 
of 0.2 Ω .m and 20 Ω .m of resistivity (Figure 2). In this 
figure, the straight lines represent the model, the curve 
line is the response of the algorithm and the circles on it 
represent the ANDERSON & CHANG (1982) results. In 
this case, it exists a perfect fitting between both results. 

In relation to 3D results, we used two groups of models, 
the first one composed by 2.5 D models, a lready tested 
by ROJAS (1995), and the other one, related to particular 
cases refered to different kind of complex 3D geological 
environments. In his simulations, ROJAS (1995) used the 
finite difference method with axial symmetry (2.5D) in 
their models. First, we simulated a wellbore as a 3D body, 
with a resistivity of 1 ohm -m, placed into a sequence of 
three layers, as shown in the Figure 3. In this model, the 
well logging response corresponds to the 2C40 arrange-
ment, obtaining similar results with the ROJAS (1995) 
(Figure 4). In this figure, the difference between the resis-
tivity values affected by the drilling mud (1 ohm-m) and 
the values obtained from our algorithm (without consider-
ing the wellbore effect), are very small.   

In the sequence, we tested a new model (Figure 5), con-
sidering the wellbore effect, in a resistivity sequence of 1-
200-1 Ω .m, but now using the 6FF40 arrangement. In this 
sense, we note, again, a good agreement between the 
ROJAS (1995) response and the obtained in our work 
(Figure 6).   

In the next step, we studied different complex 3D geologi-
cal environments. Firstly, we simulated a fracture as 
WANG (2003) simulated, who evaluated the three com-
ponents of the apparent conductivity using multicompo-
nent induction, and realized that each component had 
different responses when a vertical fracture is present.  
The resistivity form ation for this model is 1 Ω.m, mud 
drilling with 1000 Ω .m, wellbore diameter of 0.3048m (12 
inches) and a fracture length of 0.0254 m (1 inch). So, the 
3D body characteristics of this model are shown in the 
Figure 7 (not in a designed scale). For this case, the 
resistivity of the fracture is the same of the dril ling mud 
(1000 Ω .m) with a fracture extension of 1.5 m.   

The result for this model was an average resistivity of 
8.24 Ω .m (Figure 8), value that corresponds approxi-

mately to the conductivity of 120 mS/m, depending on the 
extension of the fracture. According to WANG (2003), the 
response for this model is nearly 200 mS/m. This value 
reflects the effect of the high resistivity of the fracture 
(1000 Ω .m), in according with the values got by Wang 
(2003).  

Another tested model deals with a situation when the wall 
of the wellbore is falling, making its diameter bigger than 
the adjacent sections. Here, we created a model with an 
intermediate layer of 1.5 m, 100 Ω .m of resistivity, and 
invasion drilling fluid of 0.5 m with 1 Ω.m of resistivity 
(Figure 9).  The resulting log is shown in Figure 10.  The 
differences at the intermediate layer are given by the 
inflexions present, because of the intrusion of the low 
resistivity mud (1 Ω .m).  The 2C40 probe was used for 
this case. 

Finally, we simulated the logs response from the 2C40, 
6FF40 and ILD probes, using a model with different inva-
sion radios.  The resistivity distribution corresponds to an 
aquifer (Figure 11).  So, the diameter of the wellbore is 
0.2 with 120 Ω .m. Near to this section, the area numbered 
as 2 corresponds to the first invasion radio (0.6m), repre-
sented by a resistivity of 150 Ω .m.  In its vicinity, we found 
the zone numbered as 3, which correspond to a transition 
zone, with 80 Ω .m of resistivity and 1.2 m of radio.  All this 
section is positioned into a layer of 20 Ω.m  which corre-
sponds to a virgin zone.   

The logs obtained from this three probes are shown in the 
Figure 12. Here, the 2C40 log resistivity values of the 
adjacent layers are greater than 1 Ω .m, because of the 
strong influence of the resistivity of the wellbore and the 
lower investigation potential of this tool.  In the invasion 
zone, the highest value is 80 Ω .m, approximately. More-
over, the ILD response in this layer has a maximum value 
of 29 Ω .m, showing the possibility of being in the transi-
tion zone, but still with a strong influence of the adjacent 
layers.  The apparent resistivity values of the adjacent 
zone are near to 1 Ω.m.  Finally, the response of the 
6FF40 probe shows a maximum value of 14 Ω .m,  and 
this value would correspond to the virgin zone, but always 
with some influence of the adjacent layers. The values of 
the apparent resistivities in the adjacent layers are near to 
1 Ω .m, as the ILD case.   

With the same dimensions of the last model, we changed 
the resistivity distribution to simulate an oil reservoir.  
Those distribution resistivities were taken from the Insti-
tute of Geophysics of Nobosibirsk State University, Rús-
sia (Institute of Geophysics, 2002), as shown in the Fig-
ure 13.  The response of this model appears in the Figure 
14, where the 2C40 log does not register any s ignificant 
variation in the resistivities because of the low resistivity 
value of the drilling mud (2 Ω.m) and the strong influence 
of the adjacent layers (1 Ω .m). 
The ILD log shows higher apparent resistivities (10 Ω.m), 
reaching probably the washed zone (20 Ω .m) and, as the 
former case, we observe a better performance of the 
6FF40 tool, with slightly higher values but still influenced 
by the adjacent layers. 
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CONCLUSIONS 
 
This work illustrates the performance of induction tools in 
geological enviroments considered as complex.  The use 
classical arrangements as 2C40, ILD and 6FF40 from the 
SCHLUMBERGER company, helped to test new 
algorithms for three dimensional interpretation in complex 
enviroments.  
On the first stage of this work, we succesfully tested the 
1D algorithm. After that, we introduce this 1D algorithm as 
part of the method of the integral equations for 3D 
interpretations.  This methodology showed a high degree 
of efficient responses.  We also tested our results with 
previous models used with other algorithms.  
In a second stage, we use our tested algorithm to 
modelate three dimensional geologic enviroments with 
particular characteristics, as in example: vertical fractures, 
wellbore with zones of falling walls, wellbore with different 
invasion diameters, etc.  The quality of the responses 
obtained with these models, makes possible to model 
many other situations of complex geology.  The speed of 
calculation of the program depends on the number of 
cells used, reaching 15 minutes when the number of cells 
is 420, in a computer with a total virtual memory of 
894,180 kB, hard disk of 31.3GB,  996 M Hz, in LINUX 
environment.  Using less number of cells (180), the 
execution time will be less than 15 seconds. 
For future works, it is recommended to employ more 
advanced probes, as Phasor (SCHLUMBERGER), or the 
russian Vikiz.  In this sense, it could be possible to make 
some changes in the primary field using the same 
scheme of numerical modelling, with the objetive of 
modelling slant or horizontal wells. 
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Figure 1.  Sintetic Curves for 2C40  

and  6FF40 probes  
 

 
Figure 2. Comparison between 1D responses  
with 2C40 arrangement using our algorithm  
and that of the Anderson and Chang (1982) 
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Figure. 3. Model 1: Intemediate layer with low resistivity

 
Figure 4. Response of Model 1 using 2C40 probe. 

 
Figure 5. Model 2: Intermediate layer with high resistivity 

 
Figure 6. Response of Model 2 with 6FF40 probe 

 
Figure 7. Model 3: 3D body simulating a  
fracture in an homogeneous medium.  

Figure 8. Fracture Response in a homogeneus medium
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Figure 9.  Model 4: Wall falling in an intermediate layer. 

Figure 11.  Radial Distribution of Resistivities for an 
aquifer (SCHLUMBERGER, 1972) 

 
Figure 12. Response for the Y3 model 

Figura 10. Response of Model 4 using 2C40. 

 
Figura 13. Model 6: Radial distribution of resistivities 
for an oil reservoir (adapted from the Institute of Ge o-

physics, 2002). Figura 14. Response for Model 6. 


