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Abstract 

Solution of the large system of equations that results from 
a finite-element approximation in electromagnetic 
modelling over a mesh strongly refined is most commonly 
done iteratively, because direct solution requires 
excessive amounts of memory and computation. The 
conjugate gradient – type methods used in combination 
with preconditioning – are among the most effective 
iterative procedures for solving large sparse nonsingular 
systems of linear equations

%
Ax = b . Three test models 

are performed by the proposed algorithm. The first is the 
modeling of the geoelectric field under the Equatorial 
Electrojet employing the interpretative model of Parnaíba 
Basin Conductivity Anomaly (Silva and Rijo, 2003), the 
second the electromagnetic tomography, applicable to 
cylindrical with azimuthally symmetric geometry about 
vertical magnetic dipole sources (Souza and Rijo, 2003). 
The third test model is performed using the MCSEM – 
marine controlled-source electromagnetic (Ellingsrud, 
2002) using a 2-D approximation to the sub-seafloor 
structure. The performance of the algorithm is showed in 
contrast with the Gaussian elimination.  

Introduction 

Solution of the large system of equations that results from 
a finite-element approximation (FE) over a mesh strongly 
refined is most commonly done iteratively, because direct 
solution requires excessive amounts of memory and 
computation. Although some progress has been made in 
applying algorithms for the direct solution in banded 
systems to FE equations, these still require hours of 
computational time. 

In this paper, the biconjugate gradient method is applied 
with preconditioning to the solution of systems of 
equations that result from finite element approximations in 
electromagnetic modeling (se e.g. Coggon, 1971, Rijo, 
1977 and Pridmore et al. 1981). The method will be 
described, with a brief discussion of techniques of 
preconditioning; it will be performed by three test 
problems, namely, the MT modeling to Equatorial 
Electrojet (Silva and Rijo, 2003), electromagnetic 
tomography (Souza and Rijo, 2003) and the marine 
controlled-source electromagnetic (MCSEM). 
Computational time statistics will be given for the test 

problems analyzing the performance of the method 
proposed. 

The biconjugate algorithm 

Conjugate gradient – type methods used in combination 
with preconditioning – are among the most effective 
iterative procedures for solving large sparse nonsingular 
systems of linear equations 

%
Ax = b                                (1) 

The archetype of these schemes is the classical 
conjugate gradient algorithm (CG hereafter) of Hestenes 
and Stiefel, 1952, used for Hermitian positive definite 
matrices 

%
A . The method can be seen as an iterative 

process to solve linear equation by minimizing quadratic 
functional over certain spaces called Krylov spaces 
(Axelsson, 2000). Their application in electromagnetic 
methods range to solve linear systems in forward 
modeling until parameter technique inferring in inverse 
problem (see, e.g., Zhang et al., 1995 and Wu et al., 
2003). 

While most linear systems that arise in practice have real 
coefficient matrices 

%
A  and real right-hand sides b. In 

numerical modeling of electromagnetic problems are 
involved complex coefficient functions and/or complex 
boundary conditions (see, e.g., Coggon, 1971). Hence, 
the coefficient matrices 

%
A  that arise from theses 

problems are complex symmetric and non-Hermitian 
(Freund, 1992). Since the matrix 

%
A  is not Hermitian 

symmetric, it become one matrix 
%
A  ill-conditioned, and 

the standard conjugate gradient method cannot be 
directly applied to solve the system 

%
Ax = b  (Freund, 

1992). On the other hand, the system could be 
transformed to a Hermitian system by forming the normal 
equations 

% % %
,h hA Ax = A b  where 

%
hA  denotes the 

conjugate transpose of 
%
A . However, if the matrix 

%
A  is 

ill-conditioned, the matrix 
% %

hA A is much more ill-
conditioned, leading to slow convergence rates for 
conjugate gradient technique. 

The biconjugate gradient method is a generalization of 
conjugate gradient method that arises from Lanczos's 
extension of 

%
Ax = b  to the Hermitian symmetric system. 

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

%
% %

%
h

b0 A x
=

A 0 x b
                       (2) 

The vector %b  which is used to extend b is chosen as a 
matter of convenience and determines the value of the 



The PBCG algorithm applied to EM geophysical modelling 


Ninth International Congress of the Brazilian Geophysical Society 

2
extension to the unknown vector x. This avoids forming 
the poorly conditioned normal equations (Smith, 1996). 
For symmetric complex matrices 

%
A the choice of %b made 

in Jacobs (1981) results in symmetries that reduce the 
computation needed for one iteration. The resulting 
method is the same as the conjugate gradient algorithm 
for complex matrices, with all conjugate transposes 
replaced with simple transposes. This technique has been 
discussed in works of Jacobs (1981) and van der Vorst 
(2000) and in the context of electromagnetic modeling by 
Sarkar, (1987) and Smith et al. (1990). An iteration of the 
algorithm is given by 
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            (3) 

where ix is the current approximate solution, ir  is the 

current residual, ip is the search direction in which the 

approximate solution is altered and +1iw  will be redefined 

below. For an initial guess of gx, x  the standard 
initializations are 

β= = − = =
%

, , , ,0 g 0 0 0 0 0 0 0x x r Ax w r p r     (4) 

The preconditioning 

Meijerink and van der Vorst (1977) showed that the 
conjugate gradient method can be accelerated greatly by 
using an approximate factorization of A  

≈% %
% % %

tC C A                                (5) 

to precondition the system 
%

.Ax = b  Preconditioning 
effectively changes the problem being solved to a better 
conditioned system 

=% % %%
% % % %

-t -1 ' -t
1C AC x C b                     (6) 

where ≡ %
%

,'x Cx  and ( )−≡% %
% %

.
1t tC C After eliminating w  

from equations the biconjugate gradient method can be 
applied to the preconditioned system by making the 
substitutions: 

− − − −→ → → → →% % % % % %
% % % % % % % %

, , , , ,t 1 t tA C AC x Cx b C b r C r p Cp   

With a little algebra this method reduces to equations (3) 
but with +i 1w redefined as 

−
+ += %

%
1

i 1 i 1w A r                           (7) 

where − −≡ % %%
% % %

.1 1 tA C C  

This preconditioning is necessary, because for complex 
systems the convergence is not guaranteed. Hence all 
the algorithms in practice use some kind of 
preconditioning. The preconditioner most used in linear 
systems derived of electromagnetic problem are: the 
(symmetric successive overrelaxation (SSOR) and the 
based in incomplete ILU factorizations, like, the 
preconditioner incomplete Cholesky with its variants: the 
modified incomplete Cholesky (MIC) and the shifted 
incomplete Cholesky (SIC) (see e.g. Wu, 2003). We used 
as preconditioning the ILU0 factorization (Benzi, 2002). In 
this technique, the Gaussian elimination is performed 
without the fill-in, namely, no fill-in is permitted, elsewhere 
in positions in that the elements are non-zeros. Hence the 
computational memory spent to storage the 
preconditioning matrix is the same allocated for the 
coefficient matrix. The version preconditioned for the 
biconjugate gradient algorithm (Axelsson and Barker, 
1984) is given by 
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          (8) 

The storage of matrix A  

The application of the finite element method in 
electromagnetic modeling lead up arisen of sparse 
matrices. In order to take advantage of the large number 
of zero elements of such matrices, special schemes are 
required to represent so far as possible only the nonzero 
elements, and to be able to perform the common matrix 
operations. There are many methods for the storing the 
data that represent such matrices, like the compressed 
row storage (CRS), compressed and its column version, 
compressed column storage (CCS), the storing by 
diagonal called compressed diagonal storage (CDS) etc. 
(see for instance Saad, 2000 and Barret, M. et al. 1993). 
The scheme which is used in this work is the so-called 
Ellpack-Itpack format (Saad, 1996) wich is popular on 
vector machines. The assumption in this scheme is that 
there are at most Nd nonzero elements per row, where 
Nd is small. Then two rectangular arrays of dimension 
( )Nd n×  each are required (one complex and one 
integer). The first array, COEF contains the nonzero 
elements of matrix. The nonzero elements of each row of 
the matrix can be stored in a column of the array 
COEF(1:Nd,1:n), completing the column by zeros as 
necessary. Together with COEF, an integer array 
JCOEF(1:Nd,1:n) must be stored which contains the row 
positions of each entry in COEF. One example, this 
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scheme is represented follow-up in Figure 1, by one 
typical symmetric matrix that emerges of the finite 
element modeling. 
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Figure 1 – The Ellpack-Itpack scheme for storage sparse 
matrices that emerge of numerical modeling by finite 
element method. 
 

Test models performed by BCG algorithm 

Three test models are performed by the proposed 
algorithm. The first is the modeling of the geoelectric field 
under the Equatorial Electrojet employing the 
interpretative model of Parnaíba Basin Conductivity 
Anomaly (Silva and Rijo, 2003), as is shown in Figure 2. 
The field electric obtained are introduced in Figure 6. 

 
 

Surface 0ρ (air) 

mΩ= 501ρ

mΩ=102ρ

2 km 

1 km 4 km mB Ω= 30002ρ

mB Ω=11ρ

40 km 

80 km  
Figure 2 – Model of Parnaíba Basin Conductivity 
Anomaly. 

The second test problem is the electromagnetic 
tomography, applicable to cylindrical with azimuthally 
symmetric geometry about vertical magnetic dipole 
sources (Souza and Rijo, 2003). The model consists of 
bodies anomalous in an otherwise homogeneous 
background of electrical conductivity 

p. Vertical 
magnetic dipole sources are laid upon the symmetric axis 

that represents a well. One example of this geometry is 
the classical model introduced by Alumbaugh, 
(Alumbaugh and Morrison, 1995). The Figure 3 illustrates 
four targets taking shape of the acronym SbgF. The 
Figure 6 illustrates the results obtained by tomography 
EM. 

 
Figure 3 – Three-dimensional representation of complex 
geometry. A section of anomalous bodies between the 
wells show us the acronym – SbgF 

The last test model is performed using the MCSEM – 
marine controlled-source electromagnetic (Ellingsrud, 
2002) using a 2-D approximation to the sub-seafloor 
structure, as introduces in the Figure 4. In this sketch the 
hydrocarbon bearing has thickness h3 and the reservoir is 
located in a depth h2 embedded at halfspace beneath the 
seafloor. The model is energized by a mobile horizontal 
electric dipole (HED) source and an array of seafloor 
electric field receivers. 

 
Figure 4 – Sketch of the model. Red marks indicate 
receivers, blue mark the transmitter. 

The Figure 7 illustrates the electrical fields for a model, in 
which the resistivity of the sea is equal to 0.3 ohm-m, and 
a level of 800 m for the seawater is considered. The 
resistivity of the host is of 1 ohm-m, and the reservoir 
possesses resistivity of 100 ohm-m and strikes at depth of 
1Km with a thickness of 100m (Eidesmo, et..al., 2000). 
The normalized electric field strength is showed in Figure 
8 as function of range for the in-line geometry. The other 
model is introduced in Figure 9; in this case the electric 
fields are very near each other, because the model is 
more demanding, which the follows values: ρ1 = 0.3 Ωm, 
ρ2=1 Ωm and ρ3 = 10 Ωm, the height are: h1 = 1500 m , 
h2 = 2450 m and h3 = 10 m. The Figure 10 shows the 
normalized in-line electrical field resulting from this model. 
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Figure 5 – Geoelectric field components in the presence of 2-D structure under the Equatorial Electrojet. 

 

 
Figure 6 - Results for anomalous bodies with complex geometries four frequencies. (a) True model, - recovered image - at: 
(b) 1 kHz, (c) 10 kHz, (d) 100 kHz and (f) 300 kHz. 

 

 
Figure 7 - Amplitude of the in-line electrical field 

 
Figure 8 - Normalized in-line electrical field 
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Figure 9 - Amplitude of the in-line electrical field 

 

Statistic of the experiments 

The Figure 11 shows the performance in contrast with the 
Gaussian elimination and the preconditioned biconjugate 
gradient for the test model introduced in Figure 2. The bar 

 
Figure 10 - Normalized in-line electrical field 

graphics shows the computational time versus number of 
unknowns. At the first chart is demonstrated that 
Gaussian elimination solver is more efficient that the BCG 
algorithm, because in this experiment the band of matrix 
is constant, at the second graphic the band is not more 
constant and the BCG is more efficient, and finally if we 
have a huge quantity of unknowns the BCG is more 
recommended. The others test models had performed 
with equivalent results. 
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Figure 11 – The statistic of the performance of preconditioned biconjugate gradient in contrast with the Gaussian elimination. 
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Conclusions 

The preconditioned biconjugate gradient method is 
suitable option as an iterative solver for electromagnetic 
modeling, it was demonstrated that in problems which the 
band of matrix is constant the Gauss algorithm is more 
efficient than the BCG method. On the other hand, in 
problems that have very large of the unknowns, the BCG 
method has a gain in performance in relation to the 
Gaussian elimination. Hence, with the strong tendency of 
electromagnetic problems in geophysics migrates to 
three-dimensional cases, where the number of unknowns 
is very large, the preconditioned biconjugate algorithm is 
a natural option to solve such problems. 

References 

Alumbaugh, D. L., Morrison, H. F., 1995. Theoretical 
and practical considerations for crosswell 
electromagnetic tomography assuming a cylindrical 
geometry: Geophysics, vol. 60, No. 3, p 846 -870. 

Axelsson, O., Barker, V. A., 1984, Finite element 
solution of boundary value problems, Academic 
Press. 

Axelsson, O., 2000. Iterative solution methods. 
Cambridge University Press. 

Benzi, M.,2002. Preconditioning Techniques for Large 
Linear Systems: A Survey. Journal of 
Computational Physics, 182, p418- 477. 

Coggon, J. H., 1971. Electromagnetic and electrical 
modelling by the finite element method. Geophysics 
36, p132- 155. 

Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M.C., 
MacGregor, L.M. & Constable, S., 2002. Remote 
sensing of hydrocarbon layers using sea-bed 
logging (SBL): Results of a cruise offshore West 
Africa, The Leading Edge, 21, 972-982.  

Eidesmo, T., Ellingsrud, S., MacGregor, L. M., 
Constable S., Sinha, M. C., Johansen S., Kong, 
F. N., and. Westerdahl, H., 2000. Seabed logging 
(SBL), a new method for remote and direct 
identification of hydrocarbon filled layers in 
deepwater areas, First Break, 20, p144- 152. 

Freund, R. W., 1992. Conjugate gradient-type methods 
for linear systems with complex symmetric 
coefficient matrices. SIAM Journal on Scientific and 
Statistical Computing, 13, p425- 448. 

Hestenes, M. R. and E. Stiefel., 1952. Methods of 
conjugate gradient for solving linear systems. J. Res. 
Nat. Bur. Stand. 49, p409- 436. 

Jacobs, D. A. H., 1981, The exploitation of sparsity by 
iterative methods, in Duff, I. S., Sparse matrices and 
their uses, academic Press, p191– 222. 

Meijerink, J. A., and van der Vorst, H. A., 1977. An 
iterative solution method for linear systems for which 
the coefficient matrix is an M-matrix. Mathm. Comp. 
31, p148- 162. 

Pridmore, D. F., Hohmann, G. W., Ward S. H., and Sill, 
W. R., 1981, An investigation of finite – element 
modeling for electrical and electromagnetic data in 
three dimensions: Geophysics, vol. 46, No. 7, p 1009 
-1024. 

Rijo, L.,1977. Modeling of electric and electromagnetic 
data, Ph.D. Thesis. University of Utah. 

Saad, Y., 1996. Iterative methods for linear systems. 
PWS Publishing Co. 

Silva, M. W. C. and Rijo, L. 2003. Modeling the geo-
magnetic fields under the Equatorial Electrojet 
perpendicular to the strike of a 2-D structure. In: 8th 
International Congress of the Brazilian Geophysical 
Society. Rio de Janeiro, SBGF. In CD-ROM. 

Souza, V. C. T. and Rijo, L., 2003, The potentiality of the 
finite element method in electromagnetic 
tomography, 8th International Congress of The 
Brazilian Geophysical Society, Salvador, in CD-ROM 

Smith, J. T., 1996. Conservative modeling of 3-D 
electromagnetic fields, Part II: Biconjugate gradient 
solution and an accelerator. Geohysics 61, p1319- 
1324. 

Smith, C. F., Peterson, A. F., and Mittra, R., 1990. The 
biconjugate gradient method for electromagnetic 
scattering. IEEE Trans. Antennas Propagat., 38,  
p938- 940. 

van der Vorst, H. A., 2000. Iterative method for large  
linear systems. 

http://www.math.ruu.nl/people/vorst/lecture.htm  

Wu, X., 2003. A 3-D finite-element algorithm for Dc 
resistivity modelling using the shifted incomplete 
Choleski conjugate-gradient method. Geophysical 
J. Int., 154, p947- 956. 

Wu, X.; Xiao, Y.; Qi, C.,and Wang, T., 2003. 
Computations of secondary potential for 3D DC 
resistivity modelling using an incomplete Choleski 
conjugate-gradient method. Geophysical 
Prospecting, 51, p567- 577. 

Zhang, J.,Mackie R. L. and Madden, T. R., 1995. Three-
dimensional resistivity forward modeling and 
inversion using conjugate gradients. Geophysics 
60, p1301– 1307. 

Acknowledgments 

This work was supported by Programa de Recursos 
Humanos da ANP - PRH/ANP-06 and CTPETRO/CNPq-
46295/00-8. The authors would like to thank to Curso de 
Pós-Graduação em Geofísica – UFPA for logistic support 
and to all researchers this department. 


