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Abstract 

We use a finite-difference scheme to simulate 2D ground 
penetrating radar data by solving the damped wave 
equation. We show that the stability condition for the 
damped scalar wave equation does not depend on the 
damping factor.  As an example application of our 
modeling tool we investigate a typical situation in granite 
prospecting, where a conductive clay overburden masks 
the real position of the fractures in  the granite. The 
results of the modeling have a good agreement with the 
actual data. Also, the algorithm shows  well  the increase 
in attenuation with the increase of  the frequency.  The 
algorithm shows to be a good basic modeling tool that 
can be used for further applications and  for comparisons 
with other modeling methods like pseudospectral or finite 
elements. 

Introduction 

2D forward numerical modeling of GPR data is an 
important tool to validate the interpretation of actual 
radargrams. Goodman (1994) and Cai and McMechan 
(1995) presented forward modeling routines using ray-
tracing techniques.  The drawback of these techniques is 
that they do not simulate diffraction events, as outlined by 
Zeng et al. (1995), who presented modeling by Fourier 
methods and compared them with the ray methods. 
Casper and Kung (1996) applied the pseudospectral 
forward modeling algorithm on GPR based on an explicit 
solution of the 2-D lossy electromagnetic wave equation 
and Chen and Huang (1996) used finite-differences 
following the same approach. 

All these methods have in common the assumption of a 
dielectric behavior of the earth, which is valid for most 
geologic applications of GPR, figuring in the frequency 
range between 10 and 1000 MHz, and imaging materials 
with conductivities lower than 100 mS/m (Davis and 
Annan, 1989).   

Under such conditions the velocity of propagation remains 
constant and the attenuation may be considered 
seperately from the velocity, what gives the 
electromagnetic radar waves the same behavior as the 
seismic acoustic waves. 

In the present work we use this electromagnetic-acoustic 
analogy and employ classical finite-differences to solve  
the damped scalar wave equation following Chen and 
Huang (1996) and Alford et. al. (1974). We show that the 

stability condition for the damped scalar wave equation 
does not depend on the damping factor, therefore 
reducing to the same condition presented by Alford et. al. 
(1974) for the wave equation without attenuation.  Also, 
we study the effect of attenuation on radargrams by 
computing 2D synthetic zero-offset sections. 

As an example application of our modeling tool we 
investigate a typical situation in granite prospecting, 
where a conductive clay overburden masks the real 
position of the fractures in  the granite. The results of the 
modeling have a good agreement with the actual data 
and show  the usefulness of our approach. 

The algorithm shows to be a good basic modeling tool 
that can be used for further applications in migration or  
for comparisons with other modeling methods like the 
pseudospectral or  finite elements. 

The Electromagnetic Wave Equation 

Our derivation of the 2D electromagnetic damped wave-
equation follows Casper and Kung (1996). 

Maxwell’s equations are 

t
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where E is the electric field intensity (V/m), D is the 
electric flux density (C/m2), H is the magnetic field 
intensity (A/m), B is the magnetic flux density W/m2, Jc is 
the electrical current density (A/m2), Js is the electric 
source current density (A/m2), Ms is the magnetic source 
current density (V/m2) and qv is the electrical charge 
density (C/m3). Note that all these quantities are functions 
of position and time. 

We employ the constitutive relations for linear and 
isotropic media: 

= εD E   (5) 

= µB H   (6) 

= σJ E   (7) 

where ε  is the electrical permitivity (F/m), µ  the 
magnetic permeability (H/m) and  the electrical 
conductivity (S/m) of the medium, all of them time 
invariant. 
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We make the following assumptions: 

- σ and ε depend on x and z 

- E, D, H and B depend on x, z and t 

-  0µ = µ

- Jc = 0 and qv = 0 

In two dimensions there are two independent orthogonal 
polarizations of the electric and the magnetic field 
components: the transverse electric (TE) mode with field 
components Ey, Hx Hz and the transverse magnetic (TM) 
mode with field components Hy, Ex, Ez. We simulate the 
GPR system antenna as an infinite current line oriented 
along the y-axis, what yields the radiation in the TE mode.  

Under this assumptions, the vector wave equation for the 
electric field is reduced to the damped scalar wave-
equation (Casper and Kung 1996): 

2
2

2
0

1 (x, z) 0
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− ∇ + =

∂ µ ε ε ∂
y y

y

E E
E  (8) 

The finite-difference scheme 
 
We solve the equation (8) following the scheme proposed 
by Alford et al. (1974) for seismic waves with finite-
differences operators of fourth order to discretize the 
spatial derivatives and with finite-differences operators of 
second order in time. The time derivative of the 
atenuation term is solved with a centered difference 
operator of second order 
 

2O( t )
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= +
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2 t
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where we omitted the subscript of the y – component of 
the electric field and where  t= n ∆t,  x= k ∆x,  z=  j∆z. 
Using an uniform grid (h= ∆x = ∆z), the method becomes 
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where  

0
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We show  that the necessary stability condition is 
 

 
3r
8

≤  (11) 

which is the same as indicated by Alford et al. (1974) for 
the scalar wave-equation without damping (Appendix A). 

To avoid numerical grid dispersion, we use spatial 
sampling of five points per wavelength. 

The absorbing boundary conditions are implemented 
using the sheme of Cerjan et al. (1985) because of its 
simplicity and robustness. 

We use the source function  

2 t
0f (t) t e sin( t)−α= ω  

where 0

3
ω

α = ; and f0 is the central frequency and 

ω0= 2πf0. 

Examples 

We tested our finite-difference modeling algorithm against 
actual data. This data where aquired in the granite mine 
DALVA 5 in the town of Rui Barbosa, state of Bahia, 
Brazil. The goal of the work was the correct mapping of 
the fractures in the granite. Here we face a typical 
situation: the excellent radar response of the granite was 
masked by a conductive clay overburden. The high 
conductivity (20mS/m) of  this overburden attenuates 
strongly  the radar response of subjacent structure and 
therefore makes the correct interpretation of the 
radargram more difficult. Then, forward modeling plays its 
role as a check to see if the interpretation is done 
correctly. 

The real GPR section, shown in figure 1, was aquired 
along 43,2 m with a 200 MHz antenna and a GSSI SIR-
2000 system. The processing of the actual data was: 
mute-off from t= 220 ns onwards, spectral analysis and 
application of a band-pass filter from 14 to 260 Mhz. Then 
we applied AGC gain with a time window of 40 ns and 
finally a filter with lateral correlation envolving 5 (five) 
traces. 

The first model was built on geological observations, such 
as the large fractures in the granite quarry and its clay 
overburden, which were combined with the values of 
electrical permittivity and conductivity found in the 
literature (Davis and Annan, 1989). After several trial and 
error runs we obtained the geoelectric model shown in 
figure 2, where we used εair= ε0, σair= 0, εclay= 10 ε0, σclay= 
20 mS/m, εgranite= 4.6 ε0, σgranite= 0.01 mS/m and where 
the fracture in the granite is filled with the properties of air. 
Figure 3 is the syntetic zero-offset section using the 
central frequency of 200 MHz which corresponds to this 
model. Figure 4 is the same zero-offset section without 
considering attenuation, i.e. putting the conductivitiy to 
zero in the modeling algorithm. Finally, figure 5 is the 
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syntetic zero-offset section using the central frequency of 
100 MHz which corresponds to the model  shown in fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Real GPR section over the granite quarry, 
aquired along 43,2 m with a 200 MHz antenna and a 
GSSI SIR – 2000 System 

 

 
 
Figure 2: Geoelectric model of the granite quarry with a 
clay overburden where εair= ε0, σair= 0, εclay= 10 ε0, σclay= 
20 mS/m, εgranite= 4.6 ε0, σgranite= 0.01 mS/m and where 
the fracture in the granite is filled with the properties of air. 
 

Results  
 
Analyzing the figures, we clearly observe the good 
agreement between the real section shown in figure 1 and 
the syntetic section shown in figure 3. On the right portion 
of both sections we recognize the reflection of fracture in 
the granite quarry and its multiple reflection beneath. On 
the left portion of both sections we can see  the effect of 
the attenuation caused by the clay overburden, masking 

 
Figure 3: Syntetic zero-offset section of the geoelectric 
model shown in figure 2, computed with central frequency 
of 200 MHz and considering attenuation 
 

 

 
Figure 4: Syntetic zero-offset section of the geoelectric 
model shown in figure 2, computed with central frequency 
of 200 MHz and without attenuation 

 
Figure 5: Syntetic zero-offset section of the geoelectric 
model shown in figure 2, computed with central frequency 
of 100 MHz and considering attenuation 
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the contact between the clay and the granite, as well as 
the fracture in the granite. The comparison of the syntetic 
section considering attenuation (fig. 3) with the syntetic 
section without attenuation (fig. 4)  shows clearly the 
importance of  the attenuation factor in our modeling tool 
to reproduce real GPR data. On the other side, 
simulations with zero conductivity as shown in fig. 4 are 
helpful to find an optimal geoelectric model. The 
comparison of  the syntetic zero-offset section using the 
central frequency of 200 MHz (fig. 3) and the syntetic 
zero-offset section using the central frequency of 100 
MHz (fig. 5)  shows the increase of attenuation with the 
increase of frequency as discussed in the literature (e. g. 
Turner and Siggins, 1994). 

Conclusions 

In the present work we employ classical finite-differences 
to solve  the damped scalar wave equation. We show  
that the stability condition for the damped scalar wave 
equation does not depend on the damping factor, being 
the same as the presented for the wave equation without 
attenuation presented by Alford et. al. (1974). 

As an example application of our modeling tool we 
investigate a typical situation in granite prospecting, 
where a conductive clay  masks the real position of  the 
fractures in the granite. The results of the modeling have 
a good agreement with the actual data. Also, the 
algorithm shows  well  the increase in attenuation with the 
increase of  the frequency.   

The algorithm shows  to be a good basic modeling tool.  

Further work will be: 

i) Use of  the finite-difference algorithm in 
other practical applications for validating of  
actual data 

ii) Comparison of the finite-difference algorithm 
with other direct modeling algorithms such 
as the pseudospectral method or the finite 
elements method 

iii) Extension of the presented modeling 
algorithm to anisotropic and general 
frequency dependent media, such as 
treated by Carcione (1996) 
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Appendix A 

Derivation of the stability condition 
 
We use a simplification of the von Neumann condition (e. 
g. Thomas, 1995). We consider 
 

jk i zi xn n
kjE e e ψθ= λ                                       (A.1)  

and look for conditions that make 1λ ≤ , which is 

the necessary condition for stability. Putting (A.1) in the 
finite difference method (10) yields, after some algebraic 
manipulation, the following quadratic equation for the 
amplification factor λ: 
 

n(s 1) 2 (1 s) 0+ λ + αλ + − =                       (A.2) 
 
where 

( ) ( ){ }
2

2 2r cos h 4 cos h 4 18 1
6
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The solutions of (A.2) are 
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(i) If , then α +  and 1α > 2 2s >1
 

21 1 s 1 1
1 s−

− − + −
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what means that the method is unstable. 

 
(ii) If , then α +  and 1α < − 2 2s >1
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what means that the method is unstable. 
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From (iv) and (v): 
 
(vi)   and  2 2sα + ≥1 2 1 1⇒ λ ≤α ≤  

 
From (iii) and (vi): 
 

(vii) 2 1 1α ≤ ⇒ λ ≤  

 
Therefore, the absolute value of the amplification factor is 
bounded by 1 if 1α ≤ regardless of s. This means that 

the stability condition does not depend on s. 
 
 

Thus, we have to impose the condition  
 

1 1− ≤ α ≤ . 
 
Considering that ( )min 1α = − , the equation 

 
1− ≤ α  

 
is ever valid. 
 

Considering that ( ) 216x r 1
3

α = −ma , the 

equation 
 

1α ≤  
 
is valid for 
 
 

3r
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≤  

 
which is the same condition as given by Alford et. al. 
(1974) for the scalar wave equation without damping. 
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