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Abstract 

Recently a new and very important geophysical method 
for detection of oil-filled reservoir in deep-water areas has 
been introducing in the petroleum industry. The method, 
called Marine Controlled Source Electromagnetic 
(MCSEM), also known as Sea Bed Logging (SBL), maps 
the contrast between the electrical resistivity of an oil-
filled reservoir and that of the sedimentary host strata. 
Usually the resistivity of the former is greater than that of 
the latter. The MCSEM method is based on the diffusion 
of electromagnetic energy at low frequency generated by 
a mobile horizontal electrical dipole and detected by an 
array of receivers distributed on seafloor. In this paper we 
present a finite element algorithm for 2.5-D MCSEM 
modeling.  The performance of the algorithm is illustrated 
by means of some selected examples. 

 

Introduction 
 
In the last few years, a new geophysical method called 
MCSEM (Marine Controlled - Source Electromagnetic), 
also known as SBL (Sea Bed Logging) destined for 
petroleum exploration in deep waters has drawn attention 
of several oil companies. The MCSEM method is based 
on the use of a mobile horizontal electric dipole (HED) 
source and an array of electric field receivers distributed 
on the seafloor (Eidesmo et al., 2002). The transmitting 
dipole emits a low frequency (0.125 to 2 Hz) signal that 
diffuses outwards both into the overlying water layer and 
downwards into the seabed sediments. The receivers at 
the seafloor give the amplitude and phase of the electric 
field signal, which depends on both the geometry and the 
resistivity of the underlying sediments. The method relies 
on the moderate resistivity contrast between oil-saturated 
reservoirs and the surrounding sedimentary layers 
saturated with aqueous saline fluids. International 
contractor geophysical companies specialized in this 
technology have being busy carried out surveys in many 
part of the world, including here in Brazil. Research at 
universities supported by oil-companies, like de CEMI 
coordinated by Zhadanov at University of Utah and the 
Script Institution of Oceanography, San Diego, CA. 
consortium coordinate by Constable, has help clarify the 
pit-falls behind this method. In this paper we present 
same interesting results based on a finite element 
algorithm for 2.5-D MCSEM modeling.  

 
Methodology 
 
In view of the geometry of the HED the MCSEM modeling 
is essentially a three-dimensional electromagnetic 
problem. However, if the length of the reservoir in one 
horizontal direction is much larger than in the other two 
directions the problem can be treaded mathematically as 
a sequence of two-dimensional partial problems. This can 
be accomplished by Fourier transformation (Stoyer & 
Greenfield, 1976; Unsworth at a., 1993) with respect to 
the strike direction, for example y-axis. This methodology 
is known as 2.5-D modeling. Each partial two-dimensional 
problem can easily be solved by the finite element 
method in term of secondary field components Ey and Hy, 
where y is the strike of the 2-D reservoir. Technically 
these two components are coupled into TE and TM 
electromagnetic modes. The Ex and Ez components are 
obtained from Ey and Hy by numerical derivatives. The 
final approximate solution of the secondary electrical field 
is obtained via inverse Fourier transform from all these 2-
D partial problems. For that we used the linear digital filter 
technique with 30 coefficients for the sine and co-sine 
filters (Rijo & Almeida, 2003).  Finally, this approximated 
secondary solution is added to the primary solution which 
is solved analytically by the Hankel transforms J0 and J1. 
These transforms were computed with the system 
Mathematica. See the Appendix for more details about 
the algoritm. 

 

Examples 
 
The model used for illustrating the performance of our 
algorithm is shown in the Figure 1, suggested by Marco 
Polo from Petrobras. The thickness of the seawater layer 
is h1 = 1500 m with the seawater resistivity equal to 0.3 
ohm-m. The resistivity of the oil-filled reservoir is 10 ohm-
m with h3 = 50 m thickness at h2 = 950 m below the sea 
bottom. The resistivity of the host sediments is 0.8 ohm-
m. The HED is 30 m above the sea floor. The frequency 
used in the transmitter is equal to 0.125 Hz. The lateral 
extensions of the reservoir are 3, 5, 7 and 10 km. Initially, 
the in-line responses of Ex and Ez components of the 
electric field are shown. Afterwards, the maps of these 
components at the sea bottom covering an area of 15 km 
X 15 km around the transmitter with 60 X 60 receivers are 
discussed. 

In-line responses 

In order to facilitate the comprehension of the 2.5-D 
responses it is useful to have the 1-D response for 
comparison.  In Figure 2 the red curve corresponds the 
amplitude of the Ex electrical component of the 
background model (half-space), that is, the model without 
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the reservoir. The magenta curve is the response of the 
1-D model. Yellow, green, cyan and blue curves 
correspond to 

 

 

 

 

 

 

 

 

 

 

 

 

 

the responses of the 3, 5, 7 and 10 km reservoirs, 
respectively.  Note that these are noise free data. Real 
data is commonly noisy, therefore it is difficult, based on 
this kind of information, to tell if the reservoir is 1-D or 2.5-
D.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The phase of the Ex response are shown in Figure 3. It is 
still difficult to discriminate the 2.5-D models from the 1-D 
model. 

In order to highlight the effect on the response of the 
reservoir it is a common practice to normalize the Ex field 
strengths by that of the corresponding background model. 
(Eidesmo et al., 2002). The normalized Ex responses of 
the 1-D and 2.5-D models are shown in Figure 4. Now, 
we can easily visualize the effect on the Ex response of all 
models. Indeed, the anomalies very from 10% to 40% 

depending on the lateral extension (3 km to 10 km) of the 
reservoir.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The yellow rectangle represents the cross XZ section the oil-filled reservoir. The 
blue arrow represents the transmitter and the red points the receivers. 

Figure 4. Normalized Ex field strengths by the 
corresponding background model. 

Figure 2. Comparison of the 1-D (magenta) and 2.5-D
Ex amplitude responses. The red curve is associated
with the background model, that is, the half-spece
without hydrocarbon (NoHc). 

Figure 3.  Comparison of the 1-D (magenta) with 2.5-D 
Ex phase response. The red curve is associated with 
the background model 
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The next three figures shown similar results for the Ez 
field components. Figure 5 shown the amplitude and 
Figure 6 the phase of the Ez field. Based on these results 
there is no much difference between the strengths of Ex 
and Ez electric field components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The normalized field strengths are show in Figure 7.  
Here, the anomalies very from 10% to 60% according to 
the lateral extension of the reservoir. 

 

Maps of normalized fields 
 
Due to the three-dimensional character of the HED 
source, a single in-line profile is not enough to reveal the 
complete picture of MCSEM anomalies even in the 1-D 
case. Indeed, the Figure 8 shows a map of the 
normalized field for the 1-D reservoir. The map shows a 
typical dipole pattern with four lobes symmetrically 
distributed.  The Ex strength at the center of each lobe is 

600% larger than the field intensity of the background 
model.  

 

 

 

 

 

 

                                  

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparison of the 1-D (magenta) and 
2.5-D Ex amplitude responses 

Figure 6. Comparison of the 1-D (magenta) and 
2.5-D Ez phase responses 

Figure 7. Normalized Ez field strengths by the
corresponding background model. 

Figure 8. Map of the normalized Ex strengths of the 
1-D model

Figure 9. Map of the normalized Ex strengths of 
the 3.5-D 3 km model 
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A similar dipole pattern characterizes the map of the 3 km 
2-D reservoir as illustrated in Figure 9. The four lobes are 
practically at the same position in despite of small 
extension of the reservoir in one direction. However, the 
field strength in the center of each lobe is only 80% of 
field intensity of the background model.  Figures 10 and 
11 and 12 show the maps of the 5, 7 and 10 km 
reservoirs. The dipole pattern in each map is absolutely 
the same as before. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The map of the normalized 1-D Ez component has a 
radial pattern centered at the dipole transmitter as shown 
in Figure 13. The intensity of the normalized Ez increases 
gradually from the center in all directions up to 100%.   
Identical pattern are observed in the case of 2.5-D 
models. The anomaly increases radially outwards from 
the center of the electric horizontal dipole. The normalized 

field strength reaches 13% (3 km), 22% (5 km), 30% (7 
km)  and 40% (10 km) according to the lateral extension 
of the 2-D reservoir.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Conclusions 
 
MCSEM (Marine Controlled Source Electromagnetic) is a 
new geophysical technology for mapping resistive layers 
associated with oil-filled reservoir. This geophysical 
method opens new horizon for petroleum exploration in 
deep-water areas. Complemented with MMT (Marine 
Magnetotelluric) this new geophysical method will 
certainly contribute for minimizing the exploration risk. We 
saw in this paper that the MCSEM method is effective 
even for very low resistivity contrast between the 
conductive host sediments (0.8 ohm-m) and the moderate 
resistive reservoir (10 ohm m). The finite element method 
algorithm presented here is very powerful methodology 
for modeling 2.5-D MCSEM data. The modeling of Ex and 
Ez in-line profiles data takes approximately 3 min on a 

Figure 10. Map of the normalized Ex strengths of 
the 2.5-D 5 km model 

Figure 11. Map of the normalized Ex strengths of 
the 2.5-D 7 km model 

Figure 12. Map of the normalized Ex strengths of 
the 2.5-D 10 km model 

Figure 13. Map of the normalized Ez strengths of 
the 1-D model 
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Pentium IV PC. A complete map with 40 parallel profiles 
takes 2 hours in the same computer.  
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Appendix 
 
The Galerkin finite element formulation for 2.5-D low-
frequency EM problems, in SI units, is given by the 
following coupled integrals  
 
 
 
 
 
 
 
 
and 
 
 

 
 
 
 
 
 
 
 
 
 
where  ψi   (i = 1, N) are the linear basis functions, Ey

s and  
Hy

s are the Fourier transform of the secondary y 
components of the electric and magnetic fields and u2 is 
the squared of the propagation constant expressed by 
 
 
 
 
The Fourier transform of the Ex, Ey and Ez components of 
the primary electric field (in the layering half-space) on the 
right-hand side integrals are given by  
 
 
 
 

 
 
 
 
 
The functions KTE and KTM in these integrals have 
geometric and electric properties information about the 
primary model.  
Now, applying integration-by-part (second Green identity) 
in the above Galerkin finite element integrals yields 
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and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming 

 
in each element and substituting into the above integrals, 
we obtain the element matrix of each cell of the finite 
element mesh. We used triangular elements, thus the 
element matrix is 6x6. These element matrices are 
assembled to form a sparse banded system of linear 
equations. In the internal elements the line integrals 
cancel out due to the continuity of the tangential 
components of the electric and magnetic fields and of the 
basis functions as well. On the external elements (those 
on the boundary of the mesh) these integrals do not need 
to be computed because the homogeneous Dirichlet 
boundary conditions on the contour of the mesh.  After 
solving the global system of linear equations for the 
secondary Ey and Hy components we compute 
numerically the secondary Ex and Ez components using 
the following expressions  
 
 
 
 
 

 

 
 
 
All these steps have to be repeated for each partial 2-D 
problem corresponding to each ky of the Fourier 
transform.  Since we use linear filter algorithm with 30 
coefficients (Rijo & Almeida, 2003) to perform the Fourier 
transform, we have to run 30 times the 2-D partial finite 
element problem in order to obtain the final solution of the 
2.5-D problem. This algorithm can easily be adapted to 
parallel computation. This is exactly what we are starting 
doing right now. 
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