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Abstract   

This paper describes how Artificial Neural Networks can 
be employed to solve seismic inverse problems. The main 
objective is to obtain one-dimensional Earth velocity 
models from seismic waveform data. Precedent works are 
discussed and a new approach is suggested. It means, 
the Principal Component Analysis is adopted to avoid 
redundant information that is originated due to the 
Common Middle Point gather. A secondary objective is to 
reduce the total number of network parameters and 
increase the generalization skill on the neural network.  

Introduction 

The geophysical problems are characterized by the 
attempt to have an image of subsurface geologic 
structures using data measured on observation surface. 
The inaccessible character of Earth interior causes 
problems like the indirect estimation of physical and 
geologic properties of rocks deeply located. Difficulty like 
representation of a geologic reality by a model 
mathematically and computationally tractable, presence 
of noise in the data and weak relationship between 
measured data and models parameters, implicates in 
problems such as: existence, ambiguity and stability of 
solution.  

The deterministic approach to solve this class of problems 
works well for simple, experimental, controlled and 
unrealistic models. The deterministic treatment of these 
problems has also a place as linear steps inside a larger 
non-linear procedure. Generally, this approach is applied 
to study; to test or to revels new ideas in a particular 
aspect of specific situations. For example, the Gauss-
Newton method applied to the study of the reflector slope 
(Figueiró and Goldin, 2005). Iterative procedures like that 
can work well for moderate non-linear problems, but out 
of that deterministic reign, there is space for applications 
of non-deterministic methods, such as: geostatistics, 
genetic algorithm, chaos, geological feelings and so on. 
Among such methods, this work is particularly interested 
in one called Artificial Intelligence (AI). It points some 
failures in applications of AI to solve inverse seismic 
problems presented in literature. In addition, it show an 
alternative strategy to overcome such difficulties and to 
solve seismic inverse problems.          

The inverse geophysical problem consists of using a set 
of observations to infer subsurface parameters. A 

mathematical model is necessary in order to do the 
relationship between the measure data and the unknown 
parameters.  Some authors (Calderón-Macías and Sen, 
1993), (An and Moon, 1993), (Röth and Tarantola, 1992) 
propose the use of Artificial Neural Network (ANN) to 
modeling this relationship.  
 
Note that a supervised ANN is nothing else than a 
function that relates an input space with an output space 
(Haykin,1999). Equations (1) and (2) illustrate a function 
for a feedforward multi-layer ANN with one hidden layer 
and a linear output layer respectively:  

yh = ϕ(W1x+b1)                                                                (1) 

and 
y = W2yh+b2                                                       (2) 

where ϕ(.) is a usual activation function as hyperbolic 
tangent or sigmoid; W1, W2 are the synaptic weights 
matrix, b1 and b2 are the bias vectors; x is the input 
vector; y is the output vector and yh is the output vector of 
the ANN hidden layer. 
 
To achieve a satisfactory performance, the ANN must be 
adjusted (i.e. the synaptic weights must be optimized).  
 
The ANN synaptic weights adjust is done by the use of 
training examples. The simulation of a synthetic wavelet 
(i.e. source) applied to a synthetic model gives a 
seismogram. Some data pairs consisting of a synthetic 
seismogram and the parameter vector of the synthetic 
model is used to training the ANN.  

The proposed problem 

This work is to suggest an automated tool for the seismic 
inversion problem. The problem scope is limited to 
obtaining 1D Earth velocity models. However, this tool 
may be extended to 2D or 3D Earth velocity model. 
 
The idea is to give a seismogram to the ANN and receive 
a velocity model of each homogeneous and isotropic 
layer separated by horizontal interfaces. Figure 1 (Dos 
Santos, 2002) shows an element of such family of 
models. 

 
Figure 1 - 1D Earth velocity model of homogeneous 
isotropic layers separated by horizontal interfaces. 
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Notice that the input vector and the output vector of ANN 
have unalterable dimension. So, the dimension of the 
seismogram matrix and the total number of the model 
parameters must be predefined according to the neural 
architecture adopted. To solve this limitation, the sample 
frequency of the seismic trace may be changed to result a 
vector of predetermined length.  

Synthetic models for ANN training 

In order to training the ANN a set of synthetic 
seismograms related to different models must be 
generated. 
 
The source (i.e. wavelet) for the synthetic training 
examples must be close to the real wavelet. The authors 
suggest the use of the gaussian second derivatives, 
according to Equation (3). Figure 2 (Cunha, 1997) 
illustrates this function. 

2)(2 ])(21[)( tf
p

petftf ππ −−=                                     (3) 

 
where fp is the peak frequency. 
 

 
Figure 2 – The source function has a gaussian second 

derivatives form. 

 
The seismic traces can be calculated based on the finite 
difference method (FDM) applied to the acoustic wave 
equation. Assuming that the Earth has an acoustic 
behavior, that allows us to implement, in a numerical way, 
a seismic modeling employing regular nets in models 
representing 2-D geological media. Second derivatives of 
the wave equation can be obtained by Taylor Series 
expansion of fourth order to the space and of second for 
the time (Mufti et al., 1996) 

This procedure makes possible to generate synthetic 
seismograms related to synthetic models. Figure 3 (Dos 
Santos, 2002) illustrates an example of this seismogram. 
Additive noise can be added to the seismograms in order 
to approximate the synthetic seismic trace to the real 
seismic trace. 

 Figure 3 – An example of synthetic seismograms related 
to a homogeneous isotropic layers separated by 

horizontal interfaces model. 

Adequate ANN architecture 

An ANN Feedforward Multilayer with one nonlinear 
hidden layer and a linear output layer is enough to 
present the universal approximation skill (Hornik et al., 
1990). So, this ANN is adequate for the geophysical 
inversion task. Figure 4 illustrates this neural architecture. 

 
Figure 4 - Flowchart of the adequate ANN. 

Equations (1) and (2) presents the mathematical model 
for this ANN. 
 
Notice that a matrix S of dimension n x m, where n is the 
number of elements of each seismic trace and m is the 
total number of seismic traces, represents the 
seismogram. However, the ANN input must be a vector. 
The solution is to concatenate all the columns of matrix S 
in order to compose a vector x with d=n· m dimensions. 
 
 The optimization of the ANN parameters demands a 
scalar function of error energy J. An adequate approach 
is to consider de Equation (4). 

)ˆ()ˆ( vvvvJ T −−=                                                         (4) 
where v  is the target velocity vector and v̂ is the ANN 
output vector.  
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Some gradient optimization method can be employed to 
minimize J, conform Equation 5. Another approach is a 
global optimization method to example of Genetic 
Algorithm, where the fitness function may be based on J. 
 

][][]1[ nJnwnw ∇−=+ α                                                (5) 
 

where w is a synaptic weight vector, n is the iteration, 
( ]1,0∈α is the learning coefficient  and J∇ is the gradient 

of J in relation to w. 
 
Normally, the total number of hidden neurons is obtained 
empirically by testing the performance of some types of 
ANN architectures.  

Pre-processing method 

Notice that, in geophysical applications, usually vector x 
has a great dimension. The direct application of the vector 
x, as the input data of the ANN, implicates in a great 
number of adjustable parameters on the ANN. 
 
ANN with a great number of adjustable parameters 
demand a great training data set to present generalization 
skill (Freeman and Skapura, 1991). The practice is to use 
at least ten examples for each adjustable parameter.  
 
The work of (Calderón-Macías and Sen, 1993) they uses 
a seismogram matrix with dimension 128 x 16 (i.e. 16 
seismic traces with 128 positions). Then, the vector x has 
2048 positions. This vector is directly applied to an ANN 
with 28761 adjustable parameters. The practice suggests 
a training set of 287610 examples to reach an adequate 
generalization skill. This training set is unavailable in 
practical applications.  
 
Fortunately, due to the Common Middle Point gather, the 
coordinates of vector x has high covariance (i.e. vector x 
has redundant information). So, it is possible to use of 
Principal Component Analysis (PCA) in order to reduce 
the dimension of the vector x. 
 
The PCA method (Haykin, 1999) allows the coordinates 
covariance elimination by a change of basis. 
 
To applied PCA method, the first step is the calculation of 
the covariance matrix C. In a discrete approach, each 
element of this matrix represents the covariance s2(xi, xj) 
between two coordinates of the vector x, according to 
Equation (6). 
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where xi and xj are coordinates of vector x and N is the 
number of examples.  
 
The second step is the determination of the eigenvectors 
vn of C and matrix P, whose columns are these 
eigenvectors, according to Equation (7). 

},...,,{ 21 nvvvP =                                                            (7) 

Using matrix P to change the C basis one can obtain the 
diagonal matrix D of eigenvalues of C, according to 
Equation (8). 

DCPPPDCP =⇒= −1                                                  (8) 

Note that matrix D (i.e., C in the new basis) does not 
present covariance. This diagonal matrix has only 
variance s2(xi, xi). The D matrix is the covariance matrix of 
vector x in the basis P. 
 
One to conclude by this fact that vector x in the basis P 
has no covariance among its coordinates. In other words, 
this vector in basis P has no redundant information. 
 
Figure 5 illustrates the basis change effect in a set of 
vectors x∈ℜ2. After the change to basis P, the covariance 
is zero and the coordinate x1P justifies almost the total of 
the variance (i.e., almost all the information). 

 
Figure 5 - Basis change effect. 

 

After the basis change, the resultant vector xP has 
coordinates with low variance (i.e. low eigenvalue in D). 
These coordinates can be dispensed due to its low 
entropy or information level. So, vector xp can be 
truncated, maintaining only the high variance coordinates. 

The ANN can receives the truncated vector xp instead of 
vector x. So, the PCA method reduces the total number of 
adjusted parameters of the ANN and consequently 
reduces the training data set to feasible values. This tool 
makes possible a real application of ANN to seismic 
inverse problems. 

Precedent works 

In the work of (Calderón-Macías and Sen, 1993) the 
authors have evaluated the application of ANN to the 
solution of geophysical inverse problems. More 
specifically, ANNs was used to obtain 1D acoustic 
velocity models with 6 layers from synthetic seismogram 
matrix compose by 16 seismic traces with 128 positions. 

Results show that the trained networks can learn to relate 
waveform seismic data with velocity models. Figure 6 
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(Calderón-Macías and Sen, 1993) illustrates an example 
of a synthetic seismogram and the velocity model used in 
the training section. 
 
In this work velocity predictions for the top layers (layers 2 
and 3) were more accurate than those for the bottom 
layers (layers 4, 5 and 6). The authors relate this result to 
the fact that the shallow layers have more moveout than 
deep layers. 
 
The work of (Röth and Tarantola, 1992) show that an 
ANN trained using data with 10% uncorrelated noise 
added performs better than a network trained with noise-
free data for solving a similar problem. 
 

 
Figure 6 - Synthetic seismograms and a velocity model 

Conclusions 

Precedent works show that ANN directly applied to 
inversion problems reproduces training data set perfectly, 
but it can be seen that there is a considerable difference 
between the training data set and the testing data set. 
 
In these works, more input patterns should be given to the 
network in order to reduce errors in the testing set. In 
case of the testing data set, the network computed a 
model that produces seismograms that have several 
mismatches in travel time compared to the ones 
computed with the true model. This is because the ANN 
has a high number of adjustable parameters in relation to 
the number of training data set. This fact may implicate in 
an underdetermined problem (i.e. more than one solution 
for the synaptic weights that makes the global error equal 
to zero). In this case, no training method can do an 
adequate fit to the net and the ANN does not possess the 
generalization skill (i.e. skill to predict data not seen in the 
training stage).  

In applications of geophysical inversion the ANN has a 
high number of adjustable parameters due to the high 
dimension of the input data. The PCA preprocessing 
method, suggested in the present paper, can reduce the 
input vector dimension without significant loss of 
information. So, the authors believe the training data set 
may be available for real implementations. 
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