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Abstract

This paper presents results for an algorithm model
proposed to estimate the central value for small
measurement data sets. This algorithm was derived to
achieve a computationally efficient method to estimate the
Larmor precession frequency for a digital proton
precession magnetometer that is being developed at the
Observatorio Nacional (Wiermann & Benyosef, 2004). An
additional comparison is shown between the proposed
algorithm and a technique called meadian that combines
mean and median procedures and it's based on
statistical bootstrapping.

Introduction

Proton magnetometers measure the total geomagnetic
field using atomic resonance. The sensor is a cylindrical
container filled with a liquid rich in hydrogen atoms,
usually kerosene, surrounded by a coil. The sensor is
connected to an electronic unit with an electronic switch,
an amplifier, and a frequency counter. When the switch is
closed, a DC current is directed through the cail,
producing a relatively strong magnetic field in the fluid-
filled cylinder.

The hydrogen nuclei (protons), which behave like minute
spinning dipole magnets, become aligned along the
direction of the applied field. Power is then cut to the coil
by opening the switch. Because the Earth's magnetic field
generates a torque on the aligned, spinning hydrogen
nuclei, they begin to precess around the direction of the
Earth's total field. This precession produces a time-
varying magnetic field, which induces a small alternating
current in the coil. The frequency of the AC current is
equal to the frequency of precession of the nuclei.
Because the frequency of precession is proportional to
the strength of the total field and because the constant of
proportionality is well known, the total field strength can
be determined quite accurately.

The classic estimation using arithmetic mean is based on
the premise that the data set posses a normal (or near
normal) and symmetrical distribution. A random noise
that pulses with infrequent rates like electronic glitches or
spikes on acquired signals, although normally distributed,
tends to look like asymmetrical and non-normal when just
a small number of samples is available. Under such

situation the distribution function is unpredictive and
usually the median becomes the estimator of choice.

Median has the advantage to be robust under the
presence of outliers (Hoaglin et al., 1983) but have the
problem to be not well behaved when data escapes from
Gaussian (Wilcox, 2001). In general when data is not
unimodal there is no meaning on central value estimation
but this is not quite true for digital frequency counting.

Under certain circumstances it is possible to know at least
in an approximate form the distribution of a given data
collection. This is the case of digital counting in which
main uncertainties are due to short term effects that
makes readings to jump around a couple of adjacent
counting. This behavior typically leads to a bimodal quasi-
symmetrical distribution that sums to spurious counting
(spikes) and other noise types induced from
electromagnetic sources or generated inside the analog
front-end electronics that typically precedes the digital
counters (filters, Schmitt-triggers among other devices).

Method

When no initial indication about the distribution shape or
function is given, specially with small data sets a
procedure largely accepted is to determine that function
as well as its variance from the data itself using the
statistical technique called bootstrap (Efron, Tibshirani,
1993). The problem with bootstrap is its computational
cost. From a set of data, several random subsets must
be created using resample with repetitions taken from
original data. For each subset a new variance must be
calculated and a final combined variance can be extract
along a new distribution plot.

Given a data set:

X:{xl,xz,...,xN} (1)

Several subset samples B must be created randomly as:
1 y*2 *B

B={x".x" . x"*| )

With these new data sets we can calculate a large
number of new mean and medians:

(XX, . X" @)
and
{med(X™), med(X"?).....med(X"*)} @

Combination of mean and median in a robust way with
the help of bootstrap can be made in a new proposed
method called meadian (Josselin & Ladiray, 2002). Its
shown that the meadian estimation stays most of time
between the mean and median results, even under mild
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asymmetrical distributions, showing in general a good
performance at some computational complexity cost.

Laplace defined a corrective term C, based on the
covariance between mean and median to create a optimal
linear combination of both:

V(x)—Cov(x,M)
V(X)) +V (M) -2Cov(x, M)

©)

where X is the mean, V the variance and M is the median.
Covariance between mean and median can also be
estimated by bootstrap:

. 1 Eyaey . . .
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The meadian method is based on a original work from
Laplace, but using just mean and median variances as
substitute for the more complex covariance:

VDXV (R)M

()

V(Z)+ V(M)
M=(1-C)x+CM ®)
with,
__® ©)
V@) +V (M)

The equations (7) to (9) represent a combination of mean
and median weighted by the inverse of their variances
(Josselin & Ladiray, 2002). This method while simpler
than Laplace original is still heavy on processing due to
bootstrap algorithm.

With the fundamental knowledge that a center value really
exists (whatever kind of '"center" it means) we can
speculate about an algorithm to estimate it. When
determining the frequency from a given signal using a
digital counter, we can assume that the mean and median
should produce approximate results depending on signal
to noise ratio (SNR) and noise shape. Even though the
meadian alone is more adequate for estimating digital
counting, for simulation purposes we can apply a simple
Gaussian noise with favorable SNR and use the results
as a comparison starting point.

The usual procedure to calculate the median is to sort the
values (classification) and pick up the middle point from
resulting list. This procedure although simple and
effective still leads to a biased estimation on very
asymmetrical distributions. It is resistant to outliers but
not efficient when exposed to some typical distribution
laws.

A better way to improve its efficiency would be to take a
weighted mean from a set of "median" data, with weights
taken from each data deviation:

C+N/2 1

ed, -761 ”
Med = "=V o ev(med,)) (10)

where C is the center index for the median and N+17 is the
window size used for data estimation.

The problem with this approach is that on determining the
deviation for each data, a premise on the center C - the
arithmetic average or equivalent - is required leading to a
estimation biased towards that average. Another problem
that persists is how to define the region where the weight
will be applied (size of N and position of C).
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Fig. 1 - Synthetic data (60 points) with strong noise
around 1000Hz before (a) and after (b) sorting for
weighted mean of median estimation. A set of numbers
around the median or other center estimator can be
taken to be averaged. As the distribution is almost
symmetric the median would be a good estimator.

Proposed algorithm

The proposed algorithm is based on the fact that even for
moderately asymmetrical distributions the sorted values
should present a region (not necessarily at the center)
that is smooth and flat or at least, not as steep as all other
regions on the set (fig.2).
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Fig.2 - Synthetic data (as in fig.1) showing the region
where the samples go smooth and near flat (after
sorting).

This place coincides with a peak on data histogram,
representing a trend to a "central" value (or a escape from
outliers). Such region (fig. 3) can be detected by a simple
algorithm that looks for a minimum derivative (Fusett,
1999) within a given limit inside a window and defined by
metrics for the specific application.
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Fig.3 - Based on the data slope (smaller derivative inside
a window) one region is selected to represent a sew
data set for estimation.

Atfter defining the window a simple mean or median can
be used to pick up a final value without any significant
difference in the resulting estimation. This method was
implemented on a microprocessor using C language and
embedded in a proton precession magnetometer with
excellent preliminary results on bench tests (Wiermann &
Benyosef, 2004).

Results

Before embedding the algorithm on the instrument, a
large number of synthetic data using random values and
spikes were used to evaluate and compare its estimation
performance.
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Fig.4 - 100 simulations of 1000Hz with Gaussian white
noise and uniformly distributed Gaussian spikes (20dB
total SNR). Data is shown after been sorted.

The figure 4 shows one simulation based on 100 runs
whose synthetic value of 1000Hz was contaminated with
Gaussian white noise and uniformly distributed Gaussian
spikes. The SNR was 20dB, twice the level achieved by
the proton magnetometer electronic filters.

As on each data measurement the results fluctuates for
all estimators, a set of histograms were built to show after
several runs how each technique (or algorithm) behaves.

Can be seen by the results on figure 5 that after several
running as the total number of estimations grows the
mean become centered on the ideal value. But if just a
few measuring are available, the standard deviation and
histogram shows that the proposed combination of mean
with median gives more accurate estimations.
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Fig.5 - Histogram for several tests comparing the mean.
Can be seen from this graphic that as the data
distribution was quite asymmetric and sparse the mean
fluctuates along all tries while the median and the
combination stay most of time near the ideal value.

Following on the table 1 is a summary with the several
estimations and its standard deviations to show their
relative performances:
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Estimator Error (x— %) SD
Mean: -2.699482 6.494555
Median: -3.740123 6.494555
Combination: -2.682701 6.070788

Table 1 - Final results showing the average and
deviation for mean, median and the proposed
combination.

Conclusions

The proposed algorithm is simpler and faster than some
complex methods like "meadian" and Laplace linear
mean/median interpolation. This method depends on the
parameters (derivative window length and error limit)
defined by own user to fit better on specific distributions.
As an investigation tool, those parameters can be tested
to find convergences that can indicates peaks on the data
histogram. When applied to the strongly centered data
contaminated by outliers it behaves similarly as the
standard median.

Acknowledgments
To FAPERJ for the support to the LDSM/ON.
References

Efron B. and Tibshirani R. J., 1993 An introduction to
the Bootstrap, Monographs on Statistics and Applied
Probability 57, Chapman & Hall, New-York.

Hoaglin D., Mosteller F., and Tukey J.W., 1983
Understanding Robust and Exploratory Data Analysis,
Wiley Series in probability and mathematical statistics,
New-York.

Fausett L.V., 1999 Applied Numerical Analysis, Prentice
Hall, New Jersey.

Huber P.J., 1983 Robust Statistics, Wiley Series in
probability and mathematical statistics, New York.

Josselin D. et Ladiray D., 2002 "Combining L1 and L2
Norms for a more Robust Spatial Analysis: the
Meadian Attitude”, First Review - Presented in
European Colloguium on Theoretical and Quantitative
Geography, Saint-Valery en-Caux France, 2001.

Rousseeuw P.J. and Leroy A.M.,, 1987 Robust
Regression and Outlier Detection, Wiley Series in
probability and mathematical statistics, New York.

Wiermann, A. and Benyosef, L.C.C. 2004, PPM
Development using distilled water as sensor liquid —
IV Reunién Nacional de Ciencias de La Tierra —
UNAM - Proceedings in CD ROM - Cidade do
México

Wilcox, R.R., 2001 Fundamentals of Modern Statistical
Methods, Substantially Improving Power and
Accuracy. Xlll, 258 p Springer-Verlag.

Ninth International Congress of the Brazilian Geophysical Society



