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Abstract

This work introduces a methodology for lithofacies
identification and classification following the probabilistic
theory of pattern recognition. This methodology applies
the Expectation Maximization algorithm to identify
lithofacies in the learning stage. This unsupervised
learning process is applied to well log data to identify
lithofacies. Uncertainty analysis is performed to predict
the classification success and the Bayesian decision
theory is applied to classify new incoming data.

This methodology was tested in well log data. The results
achieved are interesting enough to extend the
methodology to seismic resolution to classify lithofacies in
the inter-well zone using seismic attributes.

Introduction

Lithology, pore-fluid properties and porosity prediction
from seismic data has become an important goal of
petroleum exploration industry, however, the reservoir
characterization process is time consuming and an
uncertainty analysis challenge. The knowledge regarding
these reservoir petrophysical properties is a key for
hydrocarbon recovery efficiency (Mukerji, 2001).

A lithofacies mapping inside the reservoir is important for
rock physics model calibration. These rock physics
models are tools to extract the petrophyscal information
from seismic attribute. This work presents a methodology
for reservoir lithofacies classification and identification.

Recently, new methodologies for lithofacies classification
have been published. Some of these methodology use
neural network approach applied to textural attributes
(West B. P.,2002); discrimintant analysis and bayesian
classification applied to well-log and prestack seismic
inversion (Avseth,2001) and acoustic and elastic
impedance with a Mahalanobis distance classifier
(Mukeriji & Jorstad, 2001). Most of these methodologies
use a pre-defined training data-set to predict lithofacies.

In this work, we aim to enhance the framework for
lithofacies  classification using the Expectation-
Maximization algorithm (EM) on well-log data to identify
clusters representing lithofacies and to perform lithofacies
identification. This process is performed with a bayes
classifier, which provides an associated uncertainty
measurement.

The output of this methodology is:

i- the classified lithofacies;
ii- the reservoir lithofacies mapping and
iii- an associated uncertainty measurement.

The methodology was tested using well-log data from a
heavy-oil sand/shale reservoir. Next section we present
the theoretical background followed by test results and
conclusion.

Methodology

The following steps can summarize the methodology
process:

1- unsupervised learning using the EM algorithm to group
the data in k groups (lithofacies);

2 - model selection criteria (BIC) application to define a k
optimal (the number of lithofacies);

3 — uncertainty analysis: predict classification quality
using the bayes error;

4 - new data lithofacies classification classification using
the MAP classifier.

1- Expectation-Maximization algorithm:

The EM algorithm (Dampster, 1977) is a technique to
clustery data using an observed part of data to estimate
an unobserved part. We assume that the data is
distributed according to a mixture of Gaussian density
function G, denoted by

K
p(x)zZG(x|,u,,Z,)a)l (1)

I=1

where k represents the number of mixture components,
and X are a mean vector and a covariance matrix and oy
the weight of each component. Let 0k ={u1,...,1, Z1,...,2k,
1,...,ax} be a set of parameters in the mixture. The goal
of EM algorithm is to estimate the parameters 6x based on
a set of samples {x1,..,X2,...,xn} USiNg a learning principle.
We estimate these parameters by maximizing a likelihood
function L(6 ):

L0 =] [ px) = Y > Gex, | .5, o

=l =l
2

EM alternates between the two actions: i- calculates the
expected value for the likelihood from unobserved
parameters, however, we do not know this values, so an
initial guess must be used; ii- the maximization, which
consists in obtaining the parameters that maximize the
expected value of the likelihood. The new parameters will
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be the guess for the next interaction. The process
continues until convergence.

2- model selection criteria (BIC)

The problem that remains is that we do not know the
number of components k in the mixture. To surpass this
problem we define a range from Kkmin t0 Kmax, Which is
assumed to contain the koptima. At each k we obtain a
value for a penalized model selection criteria. We used
BIC (Bayesian Information Criteria) (Schwarz,1978) for
such selection criteria, BIC is defined as

BIC = -2L(6, ).+ In(n)(k —1) + k(d + (d +1)/2)
3)

where d is the data dimension. The optimum k represents
the k that minimizes Equation (3).

3 - uncertainty analysis

This methodology uses Bayes error (or Bayes risk) to
quantify the classification risk. The Bayes error represents
the probability of classifying a determined lithofacies as
another. The Bayes error is a measure that varies from 0
(no classification error) to 0.5 (maximum classification
error), a risk analysis should be done before classification
process. The following expression represents the Bayes
error:

r=[  P(w, =true| \)P(x)dx+[  P(w, = false| x)P(x)dx
wj= false wj=true

(4)

Takahashi (2000) empirically demonstrated that the
Bayes error is invariant to non-linear coordinate
transformation and is a reliable measure of uncertainty.

4 - Bayesian classification

A MAP (Maximum Posteriori Probability) classifier is
applied with a Bayesian decision theory for lithofacies
classification. A MAP operator is defined as

o(x)=argmax, P(w,)P(x|w) (5)

where P(wy) is the a priori probability of lithofacies k
obtained in the clustering stage. To calculate the
likelihood P(x|wx), a k-nearest neighbors approach based
on Euclidean distance was used.

After the Bayesian Classification, we analyze the
petrophysical property trends in a set o cross-plots,
following a rock physics diagnostic. This analysis
combines theoretical models, such as Hashin-Shtrikman
bounds (1963), empirical rock physics models (Dvorkin
and Nur, 1996) and lab data from Han et al (1986). This
analysis helps us to understand the physical properties
behavior for the classified lithofacies.

Well log tests

The EM was applied on a well log data set (well 1). Using
sonic logs (P-wave and S-wave velocities) the EM
identified five clusters, representing five lithofacies. Figure
1 presents the BIC values obtained after the EM analysis

from K = 2 to Kmax Note that k=5 minimize the BIC.
Figure 2 shows in a cross-plot Vp-Vs the sonic data (Vp
and Vs), with color indicating the lithofacies.

The next step is to build probability density functions (pdf)
for each lithofacies. These pdfs represent the available
information to classify new incoming data. Figure 3
represents the probability distribution of each lithofacies.

Figure 4 represents two pdfs. The area inside the pdfs
that is not shaded represents the Bayes error. Table 1
summarizes the Bayes error associated to each one
identified lithofacies.

Table 1 — Bayes error for the identified classes with
different pairs of parameters.

Vp-Vs P-Impedance Vp — Rho
S-Impedance

Facies 1 | 0.049021 0.117733 0.289426

Facies 2 | 0.064001 0.168257 0.276442

Facies 3 | 0.048891 0.179122 0.322092

Facies 4 | 0.074666 0.115885 0.255185

Facies 5 | 0.069354 0.111100 0.207562

After defining the lithofacies and building the pdfs for each
lithofacies, the classifier was applied on income data-set
from well 2, located near well 1. Figure 4 shows Vp and
Vs logs from well 2, the identified lithofacies and the
probabilities to happen the classified lithofacies. Table 2
shows the mean value of Vp, Vs, density and Vp/Vs ration
for the five identified classes.

Table 2 — Mean values of Vp, Vs, density and Vp/Vs ratio
for the identified facies.

RHO
(g/cc)

Vp

(m/s) Vs (m/s)

Vp/Vs

Facies 1 | 3227 1746 2.222407 1.84

Facies 2 | 3427 1775 2.196168 1.93

Facies3 | 3514 1841 2.266681 1.90

Facies 4 | 3587 1881 2.281460 1.90

Facies 5 | 3707 1992 2.352574 1.86

To test our results we cross-validated the samples from
well 1. Half of the set was used as training data and the
other half was classified with the MAP classifier. We
obtained a success rate of 92% defining as 20 the
numbers of nearest neighbors.

Figure 6 shows a cross-plot porosity-K with well log data
from well 1 and with colorbar indicating the lithofacies.
Figure 7 (from Takahashi, 2000) shows the relation of
several factors that can influence rocks properties in the
porosity-K domain. Figure 8 shows a crossplot the Mu-
Rho x Lambda-Rho and Figure 9 (from Pelletier &
Gunderson, 2004) shows the lithology variation in this
domain. From analysis of these cross-plots we can
observe:
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i- facies 2, 3 and 4 are most likely to be sandstone,
with increasing clay content. Shale has a wide
range of velocities (and impedances) and
increasing clay content in the rock may lead to
erroneous interpretation.

ii-Facies 3 and 4 have the same Vp/Vs ratio, which
is a good lithological indicator. These two facies
overlap each other in the Mu-Rho X Lambda-Rho
domain. They are probably the same facies and
the Bayesian criteria slightly over-fitted the model.

iii-Facies 5 falls in the bounds between sandstone
and tight sands, while facies 1 falls within the
bounds of shale and sandstone. Unconsolidated
sandstone and pure shale can present same
velocity. Others parameter pair, which are
sensitive to clay content, should be used to
minimize this ambiguity.

Conclusion

This methodology shows good results in identifying
clusters and classifying new samples. However identifying
lithofacies using Vp and Vs sonic logs only can lead to
erroneous interpretation.

To be able to correctly predict lithofacies, other
parameters which are good lithological identifiers, as
Vp/Vs ratio S-impedance, Mu*Rho, Lambda*Rho should
be used.

The results sufficiently encourage us to extend this
technique to inter-well region using seismic attributes
after the identification of which parameters best responds
to different lithofacies in this data set.
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Figure 1 — Results of the BIC (Bayes Information Criteria) Figure 3 — Bi-variated distributions of the identified facies,
obtained after the execution of the EM algorithm. The minimum used as priori information to classify well 2.

value indicates the number of components that best fits the
model, showing five different lithofacies in the data set.
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Figure 2 — The five identified facies after the execution of the Figure 4 — The area in white under the curve represents
EM algorithm. the Bayes error of two univariated distribution.
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