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Abstract  

We present a Bayesian formulation for the inference of 
saturation and pressure from seismic attributes, using 
Gassmann’s equations in connection with a dry frame 
pressure sensitivity law. Laboratory data is analyzed for 
the most representative pressure sensitivity parameters. 
A 1D inversion example on synthetic data illustrates how 
the methodology works. 

Introduction 

Time lapse seismic is growing to become a standard tool 
for reservoir management because it provides an 
interpretation of hydrocarbon production effects, such as 
fluid movement, changes of pressure and temperature,  
and porosity reduction by compaction. Difficulties 
associated with the interaction of these multiple effects 
makes the majority of 4D case studies qualitative and 
non-unique in nature. However information produced from 
a 4D survey, such as images of the water-oil contact is 
used to history match against reservoir simulations. The 
latter is the ultimate quantitative method for reservoir 
management (MacBeth et al. 2005).  

A considerable amount of effort has been placed in 
making time lapse seismic more quantitative. This is 
usually tackled on a case-by-case approach, where 
parameters affecting the seismic response are ranked 
according to their degree of significance. Eventually, the 
least influential parameters are dropped out from the 
solution. 4D anomalies are then modeled using only a few 
parameters. But if a parameter were to be singled out in 
terms of its general relevance, perhaps the choice would 
be saturation. It is of primary interest in virtually all cases 
because it provides a direct assessment of reservoir 
drainage pattern.   

Pressure is highly coupled with saturation, acting either to 
reinforce or counteract saturation effects depending on 
the production strategy. Rising water saturation stiffens 
pore fluid, leading to an increase in bulk modulus as 
predicted by the Gassmann equation. Pore pressure 
increase leads to a decrease in differential pressure and 
consequently a decrease in both bulk and shear moduli 
(see e.g. MacBeth, 2004). Pore pressure increase also 
leads to stiffen the pore fluid itself. Natural production 
schemes are usually characterized by an increase in 
water saturation and pressure depletion. However, under 

forced drainage schemes increasing water saturation can 
be accompanied by pressure increase.  

In normal consolidated sandstone reservoirs, porosity and 
rock frame density are expected to change by only a few 
percent (Khaksar et al., 1999). However, for specific 
cases such in chalk reservoirs, porosity becomes an 
important factor due to compactation. Other parameters, 
such as temperature are also highly relevant only in 
specific situations. For example, steam injection  
enhanced production schemes are mainly driven by 
temperature. The above perhaps explains why 
quantification of saturation and pressure effects has 
received wide attention in the recent research literature 
concerning the interpretation of time-lapse studies.  

There are several published methodologies available for 
saturation and pressure determination (Tura and Lumley 
1999, Landro 2001, Floricich and MacBeth 2005). This 
work aims at producing a contribution towards improving 
our understanding of the uncertainties involved in the 
inference of saturation and pressure from seismic 
attributes. It builds on previous work of porosity and clay 
volume inference presented by Loures and Moraes 
(2005) and porosity and saturation presented by da Costa 
et al.  (2004), as discussed in the next section. 

Method 

Consider the problem of making inferences about oil 
saturation (So) and pressure (P) at a particular point, or 
homogeneous region in space, from multiple sets of data, 
represented by . To fully 
represent the parameter space, let  and 

 be vectors representing saturation and 
pressure and the set of hyperparameters. 
Hyperparameters are additional parameters, which 
somehow need to be inferred from the data because they 
are necessary for implementing the calculations. These 
can come either from the data or statistical models 
involved in the formulation, as discussed below. 
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Following the Bayesian approach, the goal is to obtain the 
posterior distribution for saturation and pressure. A 
general form for the posterior distribution, covering the 
whole parameter space, can be written as 
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where p(.) is generically used to denote a probability 
density function. The specific functional form is defined by 
context (i.e., the argument of the function). In the above 
equation (1), p(m, h | I) is the joint a priori model for the 
saturation, pressure and the hyperparameters and p(d | m, 
h, I) is the likelihood function, carrying the forward 
modeling calculation. p(d,I) is the normalizing distribution 
required to maintain a total probability equal to unity. I 
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represents prior information, which is used to condition all 
probabilities. The final marginal posterior distribution for 
the desired parameters m can be computed by integration 
over the hyperparameters h, which can be represented by 
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assuming the parameters m to be logically independent 
from hyperparameters h. 

As mentioned in the previous section, we are considering 
the information (data) from seismic velocities and density. 
Thus the data can be introduced either in its original form 
or by an appropriate transformation, such as bulk 
modulus (κ), shear modulus (µ) and density (ρ). After 
defining the data set containing relevant information about 
saturation and pressure, the standard steps of the 
Bayesian solution include: a) defining mathematical 
expressions relating data and parameters, and b) setting 
up the statistical models (prior and likelihood). Our 
approach closely follows da Costa et al. (2004), who 
present a Bayesian formulation for saturation inference 
based on Gassmann’s equations.  Here we also consider 
the effect of pressure as described by the formulae for the 
dry frame moduli derived by MacBeth (2004), which are 
given by 
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each formula depending on the high-pressure asymptote 
(subscript ∞), a gradient parameter Eκ(µ) and a 
characteristic pressure Pκ(µ). 

Other equations used are bulk density and Gassmann’s, 
which increase the list of additional parameters to include:  
• Vshandφ , porosity and shale volume; 
• mm µκ and , the bulk and shear moduli of the solid 

(mineral) phase (sand-shale mixture); 
• ow κκ and ,  the fluid bulk moduli for water and oil 

phases; 
• owm ρρρ and, , mineral, water and oil densities. 

Next, we need to specify the probability models. We 
follow the same choices made by da Costa et al. (2004) 
to assume that errors are independent and Gaussian 
distributed with unknown uniform variances. This adds 
another additional 3 parameters to the set of 
hyperparameters, which are the data variances 

222 . The prior distribution is assumed to be 
approximately constant over the region where the 
likelihood shows significant amplitude.    

, ρµκ σσσ and

Considering the above models, especially those relating 
data and parameters, the integral in equation (2) does not 
have a closed form solution. Alternative approaches to 
treat hyperparameters are to fix them as known quantities 
or to incorporate them as unknown variables in the 
inversion. Whereas the latter introduces additional non-
uniqueness and complexity, most often requiring Monte 

Carlo type computational techniques, to fix them usually 
requires a prior stage of exploratory data analysis (data 
model set up and calibration). The calibration stage can 
be time consuming, but generally yields useful 
interpretations about the reservoir properties and its 
seismic response. The fixed hyperparameter approach 
can be equivalent to a more general solution to equation 
(2), if the calibration provides precise estimates of 
hyperparameters independently from other model 
parameters. For instance, if their distribution is 
sharply peaked, the margin )I is equivalent to 

the condition ), Io . To check how our 
methodology works, we construct a synthetic 1D example 
based on laboratory and well log data from the 
Schiehallion reservoir, which is composed by Paleocene 
turbidite channels.  
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Laboratory data 

Laboratory data consists of a set of measurements from 
22 plugs collected from within reservoir sandstone zones. 
Measurements include mineralogy, porosity (He, effective 
and CMS), density (bulk, mineral and dry) and 
permeability, in addition to velocity (VP and VS) 
measurements as a function of confining pressure.  
Figure 1 shows the complete set of measurements 
expressed in terms of bulk and shear moduli. Laboratory 
elastic moduli is plotted against pressure and fitted by 
non-linear least squares to yield a range of pressure 
sensitivity curves, which are shown in Figure 1. Data 
points are plotted color coded by either porosity (φ, top 
row) or by shale volume (Vsh, bottom row). Colors show 
the correlation existing between porosity and pressure 
sensitivity, as reported by Dvorkin et al. (1996) and 
MacBeth (2004).  Low porosity rocks appear more 
pressure sensitive than high porosity ones. However, 
Khaksar et al. (1999) present data showing the opposite 
trend.  
Correlation of pressure sensitivity and shale volume, if at 
all present, is much less apparent (Figure 1). Khaksar et 
al. (1999) and MacBeth and Ribeiro (2005) presented 
detailed analysis on such correlations, by looking into 
individual pressure sensitivity parameters and support the 
idea of no significant link between total shale volume and 
pressure sensitivity. We select a representative pressure 
sensitivity curve by first analyzing porosity distribution 
over core samples. Figure 2 (a) show a bimodal 
probability density function for porosity. The data are 
separated according the porosity and the median is taken 
as the representative pressure sensitivity model. The 
selected models are plotted against conditional probability 
density functions computed over the (P,κ) and (P, µ) 
domains, given the various porosity values.  

Inversion example 

A 3 layer sand-shale model is constructed using similar 
sedimentary sequence and petrophysical parameters as 
given by the Schiehallion data set. Physical property 
profiles (Figure 3) are obtained, beginning with a pure 
sandstone model, whose effective elastic moduli and 
density are computed from a hypothetical matrix 
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Figure 1 – Measured values of  bulk and shear moduli as function of pressure taken from 22 room-
dry sandstone plugs and best fitted models using equations (3) and (4). The plots at top row (a and 
b) are color coded with respect to effective porosity whereas (c) and (d) are color coded by shale 
volume. Note the high level of correlation between porosity and pressure sensitivity curves. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 2 – Nonp
from core plug da

y 

 

Table 1 – Input parameters u
shale-sand model. Saturations
profiles are given in the last tw
layer is L2. Figure 3 shows 
porosity and shale volume. 

 
L 

 
facies 

 
depth 
(m) 

sandφ  
(%) 

A 0–32 15 5L1 
B 32–40 15 
A 40–55 30 3
B 55–95 30 

L2 

C 95–110 30 
L3 B,A 110–

150 
same as 
respect to

) ) 

N

porosit

arametric probability de
ta. 

sed to construct a 3 la
 and differential press
o columns. The reser

the actual distributions

Vsh  
(%) 

saturation 
(%)  

(w,o,g) 

P
(MP

–100 100,0,0 20
100 100,0,0 20
–1.5 20,80,0 15
1.5 20,80,0 10
1.5 100,0,0 10
L1, but reversed with 
 depth 

inth International Cong
diff. pressure (MPa

nsity modeling for selecte

yer 
ure 
voir 
 of 

 
a)

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 - Simu
bulk and shear m

ress of the Brazilian Geop
diff. pressure (MPa

d pressure sensitivity laws 

lated porosity, clay volume, density and 
oduli profiles for the 3 layer model. 

L1

L2

L3

A

B

C

A

B

A

B

hysical Society 



SATURATION AND PRESSURE INFERENCE 
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  4

composition. The original sandstone is gradually replaced 
by a combination of shale and dispersed clays. The 
details of the model including variations in lithology, 
saturation and pressure are presented in Table 1 and 
Figure 3. 

The synthetic data, consisting of VP, VS and density, are 
corrupted with Gaussian noise and inverted for saturation 
and pressure, using the Bayesian formulation presented 
in the previous section. Porosity and shale volume 
probability distributions are obtained according to the 
methodology described by Loures and Moraes (2005). 
Other parameters, such as mineral and fluid bulk and 
shear moduli and density are assumed known and as 
fixed values in inversion. Figure 4 shows the resulting 
marginal posterior distributions for saturation and 
pressure. The saturation and pressure of the central 
reservoir layer are well determined.  

Pressure, which is set to values of 10MPa (top layer) and 
15MPa (middle and bottom layers), seems to have lower 
associated uncertainty than saturation, as represented by 
the lower and upper limits of the 0.95 probability interval 
(Figure 4, b and d). Outside the reservoir, in the shaly 
sand layers, saturation tends to follow the shale trend 
whereas pressure remains close to the true trend at 20 
MPa. The uncertainty grows large for both parameters as 
porosity decreases. Estimates (computed data) using 
saturation and pressure estimates fit the observed data 
very closely, even in the zero effective porosity intervals 
surrounding the reservoir (Figure 5) where the uncertainty 
is high.  

Conclusions 

We presented a Bayesian formulation for saturation and 
pressure inference, which is able to incorporate data from 
multiple sources of information including laboratory and 
well log data. An extension for seismic attributes inverted 
from field data is possible. The large number of 
hyperparameters requires careful calibration or further 
extension to perform the numerical computations involved 
with equation (2).  
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Figure 5 – Observed data (blue) and computed data 
(green) using mean saturation and pressure model 
estimates for elastic moduli (a and b), density (c) and 
velocities (d and e).  
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