
Optimized AVO analysis by using an optimal linear approximation 
M. Riede* &  E.Causse, SINTEF Petroleum Research, A.J. van Wijngaarden, Norsk Hydro O&E Research 
Center, A. Buland, Statoil ASA, J.F. Dutzer, Gaz de France Norge AS, R. Fillon, Gaz de France  
 
Summary 
 
We propose a method, namely OptAVO to build enhanced 
linear AVO approximations. The basis functions of the 
approximation are orthogonal and their coefficients 
represent a new set of AVO attributes. These attributes can 
directly be used for AVO classification or to obtain better 
estimates of the usual coefficients (e.g., intercept, gradient). 
The method will be illustrated for class I reflectors using 
large reflection angles. A real data example shows the 
applicability of the proposed approach.   
 
Introduction 
 
Amplitudes of reflected and transmitted plane waves at a 
planar boundary of two elastic media are completely 
determined for all incidence angles by the Zoeppritz 
equations (Zoeppritz, 1919), and can be computed if the 
elastic parameters are known. A number of lineralized 
approximations to the Zoeppritz equations have been 
developed that give more insight into the factors that 
control amplitude changes with offset/angle and simplify 
computations. Typically, trigonometric functions of the 
reflection angle are building the basis for the 
approximations, assuming small elastic parameter changes 
across the interface (Aki and Richards, 1980) or small 
incident angles (Ursin and Dahl, 1992).  Because of these 
assumptions the well-known linear AVO approximations 
can show some inaccuracies, e.g. close to the critical angle. 
The resulting approximation errors can affect the quality of 
the AVO analysis, e.g. by causing systematic errors in 
estimates of the seismic parameter contrasts.   
The OptAVO approach still uses a linear approximation, 
but the trigonometric functions are replaced by more 
general ones to obtain an optimal approximation. Available 
information on the seismic parameters is used to derive 
optimal basis functions for the particular application. The 
functions are orthogonal and derived using singular value 
decomposition. 
 
Method 
 
A linear AVO approximation using the reflection angle θ , 
can be written in the general form: 
 1 1 2 2 3 3R( ) C f ( ) C f ( ) C f ( )θ θ + θ + θ +� … (1) 

Setting the basis functions 1,2f ( )θ  to e.g.1  and 2sin θ  and 
neglecting the higher order functions we obtain a classical 
AVO approximation with intercept and gradient as AVO 
attributes.  To determine the basis functions for the 
OptAVO approach, we create a set of N reference AVO 

curves by modeling using e.g. the Zoeppritz equations. A 
realistic distribution, containing the values of the seismic 
parameters above and below an interface should be 
available from e.g. information used for rock-physics 
calibration. Such a distribution is depicted in Figure 1, 
where shale/sand reflector responses were considered. 
 

 
Figure 1: Reference AVO curves for shale/gas-sand (red) and 
shale/water-sand (blue) reflectors 

 
In each of these models we used the Zoeppritz equations 
and calculated the curves for a discrete number of angle 
values. Each reference curve can therefore be represented 
by a vector. Organizing all vectors as columns in a matrix 
R and applying singular value decomposition (SVD) we 
can write: 
 = =TR FDV FW (2) 
 
The matrices V and F are orthogonal and D is diagonal. All 
matrices are totally defined by the SVD. The new basis 
functions if ( )θ  are given by the columns of matrix F  for 
the discrete reflection angle values used during modeling.  
Figure 2 shows the basis functions obtained by OptAVO 
for this particular case. The physical meaning of equation 
(2) is that, using as many terms as modeled reference 
curves, each of the reference functions can be exactly 
described by equation (1), with the coefficients Ci, given by 
the columns of the weighting matrixW . The size of the 
weights in the matrix is related to the size of the singular 
values in the diagonal matrixD . As the singular values are 
sorted in decreasing order the largest weights are associated 
with the basis functions f1 and f2. As the singular values 
decrease usually very rapidly, we only need to consider two 
or three terms in practice. This will introduce only a small 
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error. The coefficients Ci are representing the new OptAVO 
attribute space. 
 

Figure 2: OptAVO basis functions     
 
We should now be able to describe any realistic AVO 
response that can be expected in the data by inverting for 
the coefficients Ci using equation (1) and neglecting higher 
order terms. Figure 3 and Figure 4 show the two-term and 
the three-term approximations, respectively for a modeled 
AVO response not contained in the distribution of the 
reference curves (Figure 1).  

The OptAVO approximation is able to represent the 
increase of amplitude at large reflection angles, since this 
effect is also present in the reference curves. The usual 
approximation needs three terms to give a realistic 
representation at near-critical angles. However, some 
inaccuracies still remain.  
 

 
Figure 3: Approximations of a class I shale/water sand AVO curve 
using two terms. The OptAVO approximation is denoted in red. 
The doted line shows the exact AVO curve. The blue curve 
represents the conventional approximation with analytical 
coefficients taken from the model. The conventional 
approximation with least-squares coefficients (i.e., chosen to fit the 
dotted AVO curve) is depicted in green.  

 
The proposed AVO approach using basis functions 
obtained by SVD can handle various kinds of AVO 
scenarios and is not restricted to a certain situation. There 

are in fact no limitations due to large angles, strong 
contrasts or other effects like anisotropy, as long as an 
appropriate AVO modeling is done. 
 

 

Figure 4: Approximations of a class I shale/water sand AVO curve 
using three terms. 
 
If we are interested in estimates of the seismic parameter 
contrast, the OptAVO attributes Ci can be mapped into the 
conventional AVO attribute space (intercept, gradient, etc.). 
If the aim is to classify AVO responses the new attributes 
can be used directly. Further details of the method can be 
found in Causse and Hokstad (2005), where the same idea 
is also used for the improved approximation of traveltime-
offset curves. Figure 5 shows a crossplot of the OptAVO 
coefficients C1 vs. C2, indicating the areas where the water 
sands and gas sands map. This can be used to classify the 
AVO response of measured data. 

 
Figure 5: OptAVO attribute (C1,C2) crossplot of reference curves 
displayed in Figure 1 
   
Different from conventional AVO attributes is that the 
OptAVO coefficients are not directly related to a physical 
meaning. However, as already mentioned they can be 
backprojected to the usual attribute space with intercept 
(R0) and gradient (G).  Figure 6 and Figure 7 show 
crossplots of intercept vs. gradient obtained by OptAVO. 
The AVO curves were fitted by the OptAVO 
approximation with two terms and three terms, 
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respectively. The estimated coefficients Ci were then 
converted into estimates of the conventional coefficients by 
applying a transformation matrix (for details see Causse 
and Hokstad, 2005). 
Note, the good agreement with the analytical calculated 
values displayed in Figure 8, especially when three terms 
are used. Figure 9 and Figure 10 which display the results 
using a usual two/three-term approximation show the 
inaccuracy of the conventional method. The large angles 
used in this example results in a large systematic error in 
the estimated R0 and G values. Using the OptAVO 
approach we are able to obtain more accurate estimates of 
R0 and G.  

 
 Figure 6: Crossplot of intercept R0 vs. gradient G of the AVO 
reference curves obtained by OptAVO considering two 
coefficients (C1, C2) 

  
Figure 7: Crossplot of intercept R0 vs. Gradient G of the AVO 
reference curves obtained by OptAVO considering three 
coefficients (C1, C2, and C3) 

 
Figure 8: Crossplot of intercept R0 vs. gradient G of the AVO 
reference curves (analytical values).  

 

 
Figure 9: Crossplot of intercept R0 vs. gradient G of the AVO 
reference curves obtained by usual AVO approximation 
considering two coefficients. 

 
Figure 10: Crossplot of intercept R0 vs. gradient G of the AVO 
reference curves obtained by usual AVO approximation 
considering three coefficients. 

As the OptAVO basis functions are calculated via SVD 
they are orthonormal. This means, the values of the 
estimated attributes are independent of the number of 
coefficients used in the approximation and the noise is 
uncorrelated in the crossplots (Cambois, 1998).  Thus, 
stabilizing the AVO analysis with respect to the noise level 
present in the data becomes easier. Similar advantages can 
also be obtained by orthogonalizing usual linear 
approximation basis functions (Herrman and Cambois, 
2001) or introducing non-trigonometric orthogonal basis 
functions (Johansen et al., 1995). However, the OptAVO 
approach uses an optimal basis of functions to describe 
AVO responses, with as few coefficients as possible. For a 
given noise level, we can select the right number of 
coefficients Ci to use, and drop high-order coefficients 
associated to components below the noise level. 
 
AVO classification of field data  
 
To show the practicability of the new method, we used the 
approach to predict the most likely type of lithology and 
pore fluids along a seismic section (Figure 11). Compared 
to the previous example, where only shale/sand class I 
reflectors were considered, this example uses less 
constraints. Several reflector types, which are likely to be 
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present, are considered when constructing the reference 
AVO models.   
The necessary input for the modeling (i.e., mean values and 
variances of the seismic parameters as a function of depth) 
were taken from a previous made AVO analysis of the 
same data set (Avseth et al., 2003). 
 

 
 Figure 11:  Seismic stack section. (Total time is 0.5 seconds) 
 
The set of modeled AVO reference curves was then used to 
construct the OptAVO basis functions, which are in that 
sense optimal for the specific situation. Figure 12 displays a 
lithology map calculated using the OptAVO attribute 
sections C1, C2 and performing a classification. We use the 
Mahalanobis distance to estimate the most likely layer 
category for each data sample. Reflection angles up to 35 
degrees were taken into account. Compared to the result 
constructed with intercept and gradient depicted in Figure 
13, OptAVO predicts, in better agreement with well log 
data, more gas in the top of the reservoir and more oil 
below (see Avseth et al., 2003). Due to the better lateral 
continuity of lithologies and pore fluids which can be 
observed in Figure 12, the OptAVO approach produces a 
more realistic subsurface map. 
 
Conclusions 
 
We have presented a method for improved linear AVO 
approximation. The use of orthogonal basis functions and 
the optimal adaptation of them to a specific situation by 
efficient utilization of a-priori information, increase the 
accuracy of the approximation. Thus, the new AVO 
attributes extract the information contained in the reflection 
amplitudes in an optimal and flexible way. 
The method can be used to get a better discrimination 
between different types of AVO responses or to enhance 
the estimation of conventional attributes like intercept and 
gradient. The field data example shows the applicability of 
the method. 
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Figure 12: The most likely lithology and pore fluid along the 
seismic section, obtained by classification of the AVO response 
using the OptAVO attributes C1 and C2. Black areas correspond to 
an uncertain classification. 

 
Figure 13: The most likely lithology and pore fluid along the 
seismic section, obtained by classification of the AVO response 
using intercept and gradient. 
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