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Abstract 

Spectral Decomposition is a very useful tool for the 
identification of stratigraphic features, especially in the 
characterization of thin reservoir. However, Spectral 
Decomposition is based on the windowed Discrete 
Fourier Transform, which provides a less optimized time-
frequency analysis. 
The S Transform differs from the windowed Fourier 
Transform in the adoption of a window model whose 
width is adjusted to the frequency that is analyzed. This 
confers the S Transform properties similar to those of 
wavelets Transforms in terms of time-frequency 
resolution. 
This paper presents results of the application of the S 
Transform to the spectral decomposition of synthetic and 
real seismic data.  

Introduction 

Hydrocarbon reservoirs tend to extend for hundred of 
miles but not to be very thick, usually growing thinner at 
the borders of the reservoir until it disappears. Due to the 
limitations of the seismic method, thicknesses smaller 
than the tuning thickness (Widess, 1973) are very difficult 
to determine.  

Partyka et al. (1999) and latter Partyka (2001), proposed 
a new method for examining thin-bed responses over 
large 3-D surveys based on Widess’ ideas regarding the 
analysis of the decomposed spectra of seismic data 
submitted to conventional processing. 

The concept behind Partyka’s method is that the 
reflection of a thin bed has a characteristic expression in 
the frequency domain that is an indication of the temporal 
bed thickness. 
 
Homogenous thin-bed model 

Let us consider the ideal model of a thin and homogenous 
simple bed with temporal response consisting of two 
spikes reflectivity of equal but opposite magnitude. The 
thin bed introduces a predictable periodic sequence of 
notches into the amplitude spectrum of the composite 
reflection, as is shown in Figure 1. However, in practice, 
the seismic wavelet spans multiple subsurface layers, 
whose reflections interfere with each other resulting in a 
complex tuned reflection that has a unique expression in 
the frequency domain. 
The amplitude spectrum interference pattern from a tuned 
reflection is a function of the relationship between the 
acoustic properties of the sets of layers that comprise the 
reflectivity function and the thickness of each layer.  

  
Figure 1 – Thin-bed spectral imaging (from Partyka et al., 
1999). 
 
Implications of the analysis window’s width  
 
Partyka et al. have verified that there is a significant 
difference between the amplitude spectra of a long-trace 
Transform and a short-trace one. For long analysis 
windows, a succession of geological layers statistically 
displays a random behavior that, in the context of Partyka 
et al.’s work, one can approximate to a flat spectrum. 
Such spectrum, convolved with the source signature’s 
spectrum, results in a spectrum that approximates the 
spectrum of the source signature (Figure 2).  
 
In short analysis windows, the geology no longer has a 
random behavior; it ratter acts as a filter. So the resulting 
spectrum approximates the source signature’s overprint 
plus the local interference pattern representing the 
acoustic properties and thickness of the geologic layers 
spanned by the wavelet (Figure 3). 
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igure 3 - Short-window spectral decomposition and its 

alyzed the short-window spectrum 

Figure 2 – Long-window spectral decomposition and its 
relationship with the convolutional model (modified from 
Partyka et al., 1999). 

 
F
relationship with the convolutional model (modified from 
Partyka et al., 1999). 
 

artyka et al. have anP
and verified that the pattern of notches occurs at definite 
periods with respect to frequency. Such periods are 
determined by the temporal thickness of the layer that 
was spanned by the wavelet. This relationship is given by 
the expression below: 

=
1

fP                            
t

                                                 (1) 

where  Pf is the period of notches in the amplitude
spectrum with respect to frequency (Hz) and t is the 
temporal thickness of the layer in seconds. In the same 
way, the value of the frequency component determines 
the periods of notches in the amplitude spectrum with 
respect to temporal thickness. So: 

1
tP

f
=                                                                            (2)                        

where 
spectrum 

tockwell et al., 1996) provides a local 
amplitude spectrum of a signal. It is 

Pt is the period of notches in the amplitude 
with respect to the temporal thickness (s) and f 

is the discrete Fourier frequency (Hz). Besides, the 
frequency where the first notch occurs is equal to the 
frequency that corresponds to the period of the notches.  

The S Transform 

The S Transform (S
representation of the 
defined by the following expression: 
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where h(t) is the signal in the ti
considered frequency and τ, is the translation. One can 

me domain, f is the 

see that (3) corresponds to the Fourier Transform except 
for the multiplicative term 

( )2 2

2
t ff

e
τ− −⎛ ⎞

⎜ ⎟ . This term localizes t
2π⎜ ⎟

⎝ ⎠
he events in time 

and correspond
according to τ and scales inversely proportionally to the 

s to a Gaussian window that translates 

considered frequency. The scale is given by the standard 
deviation of the Gaussian function (σ), defined by: 
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f

   (4)    

As S T orm corresponds to a representation of
local spectrum of a signal, it can be converted to the 

0

ransf  the 

Fourier spectrum. This is obtained by integrating the S 
Transform over dτ: 
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where H(f) is the Fourie
Transform is defined such that: 
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Applying the inverse F
h(t) can be exactly determined from S(τ,f): 
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ourier Transform over (5) and (6) 
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In Fourier domain, S Transfo
over H(f), as follows: 

                        

rm is obtained by operations 

 ( ) ( )
2 22

,S f H f e
π α

τ α
−∞

2 2 ; 0if e d fπατ α
−∞

= +∫ ≠                         (8)                       

here α corresponds to translation 
domain. 
w in the frequency 
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For discrete data S Transform is computed through a 
discrete version of (8).  

Considering h[kT] a discrete time series, where k = 0, 1, 
..., N-1 that corresponds to h(t) with a time sampling 
interval of T, the discrete Fourier Transform is given by: 

[ ]
21

0

1 i nkN
N

k

nH h kT
NT N

π−−

=

⎡ ⎤ =⎢ ⎥⎣ ⎦
∑ e                                 (9)              

where n = 0, 1, ..., N-1. 

                                          

The set of spanning vectors of the S Transform are not 
orthogonal and the elements of the S Transform are not 
independent. Each basis vector of the Fourier Transform 
is divided by a product into N localized vectors, element 
by element, with the N translated Gaussians, such that 
the sum of the N localized vectors is the original basis 
vector. 

Consider equation (8), replacing f by n
NT

, τ by jT  and α 

by m
NT

 the S Transform of a discrete time series h [kT] is 

then given by: 
2 2
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For n=0, the expression is defined by: 
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where j,m,n=0,1,...,N-1... 

Equation (11) shows that the time series average is in the 
zero frequency, assuring that the inverse operation will be 
exact. The expression of the discrete inverse S Transform 
is given by: 
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The same problems of sampling and finite length of the 
Fourier Transform that are responsible for the implicit 
periodicity in time and frequency domains, affect the S 

Transform. In (10) one can see that as n
NT

 approaches 

the Nyquist frequency 1
2T

⎛
⎜
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⎞
⎟ , the term 

2 2

2
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into the negative frequencies of mH
NT
⎡
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⎤
⎥ .  Stockwell et 

al.(1996) called this phenomenon self-aliasing. According 
to these authors, self-aliasing occurs even when the 
sampling rate satisfies the Nyquist criteria. At high 

frequencies the term
2 2

2
2 m

ne
π−

 become quite wide and self-
aliasing introduces errors. To avoid this effect, a special 
Nyquist frequency is proposed. However, when dealing 
with real time series, as is the case of seismic traces, this 
effect is avoided by using the analytic signal of the input 
time series. With this strategy the amplitudes at the 
negative frequencies to be zeroed, and the self-aliasing 

phenomenon doesn’t occur. More details about the 
special Nyquist frequency can be obtained in Stockwell et 
al. (1996). 
 
Tests 

The models used in the tests presented here simulate 
reflections of a layer with its top and bottom represented 
in the time domain by two reflectivity spikes with opposite 
polarities.  The sample rate used was 0.002s (Nyquist 
frequency = 250Hz) and the record length was 0.720 
seconds yielding a frequency increment of 1.190476 Hz. 
This increment was obtained by inverting the number of 
points (420) defined for the Fast Fourier Transform - FFT 
from the library CWP/SU (Cohen et al., 2002).  

From equation (2), the 250Hz frequency corresponds to a 
temporal thickness of 0.004 s. This was the thickness 
adopted for the first model.  

In the first test the model simulates the ideal situation of a 
layer represented in the time domain by two spikes 
reflectivity with the same intensity. Figure 4 illustrates the 
obtained results. Figure 4a shows the input model; in 
Figure 4b it can be seen the result of the S Transform in 
terms of time versus amplitude; and Figure 4c presents 
the results of the S Transform in terms of time versus 
frequency, with amplitudes represented by a color scale. 
In Figure 4d the amplitude spectrum for the time sample 
that corresponds to the middle of the layer is shown. In 
other words, Figure 4d is a transversal slice of Figure 4c, 
parallel to the frequency axis. In Figure 4e the amplitude 
spectrum obtained with the FFT is presented. In Figures, 
4b and 4c one can notice that the spectrum was 
satisfactorily localized in the time domain. The layer has 
been detected, the energy peak is centered in the middle 
of the layer and there is a small dispersion at the borders 
with respect to the initial and final times of the layer. 
According to equation (2), for a temporal thickness of 
0.004s the first notch is expected (excluding the zero 
frequency) at the 250Hz frequency. Comparing Figures 
4d and 4e one can observe that in Figure 4e the first 
minimum occurred exactly at 250Hz. Regarding the S 
Transform, in Figure 4d, the spectrum suffered a 
smoothing. 

 
The second test is similar to the first, except for one 
modification: the ratio between intensities of the 
reflectivity spikes that represent the layer’s top and 
bottom was changed from 1/1 to 1/3. The results of this 
test are shown in Figure 5. Concerning the temporal 
localization there was a small shift in the energy peak in 
relation to the middle of the layer, as can be seen in 
Figures 5b and 5c. In this test, the amplitude spectrum 
obtained with the S Transform (Figure 5d) has also been 
smoothed, when compared to the Fourier spectrum 
(Figure 5e).  

In the third test the model tries to simulate a situation 
closer to real seismic acquisition. The spikes reflectivity 
were multiplied by a bandpass filter of: 2Hz-5Hz-70Hz-
80Hz. The bottom of the layer was not properly sampled 
and random noise was added to the model, with a signal 
to noise ratio of 60. The random noise is added to the 
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signal by multiplying the noise by a factor. This factor 
(factor) is obtained by the following expression: 

max1

2

ampfactor
rs amp

⎛ ⎞⎛ ⎞ ⎜= ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠
⎟
⎟

                                            (13) 

where ampmax is the maximum amplitude of the trace, 
amp is the amplitude of each sample and rs is the signal 
to noise ratio. In this case a bed thickness obtained with 
equation (2) was chosen, using as input the maximum 
frequency (80Hz) before the cutoff. The calculated 
thickness was 0.0125 s, but it was rounded to 0.014 s to 
facilitate the analysis. Figure 6 shows the results of this 
test. Observing Figures 6b and 6c one can notice that, in 
the time axis, energy was centered in the middle of the 
layer and, similar to the previous tests, there is a small 
dispersion at the borders of the layer. In the S Transform 
spectrum, the smoothing is clearly evident, especially 
when compared with the Fourier spectrum. 

With the purpose of illustrating the technique proposed 
here, the S Transform was applied to a volume of real 
data from the Brazilian coast, where the occurrence of 
channels and fault systems is well known. Figures 7a and 
7b show slices of this volume. Arrows indicate channels 
and faults. Three volumes at constant frequency were 
generated, with 10Hz, 20Hz and 30 Hz. A time slice was 
selected from these volumes to be compared with the 
same time slice obtained form the data volume submitted 
to conventional processing. Comparing Figure 7c 
(conventional processing) with 7d (10Hz volume) there 
seems to exist a continuity in the fault indicated by the 
yellow arrow. Regarding the channels, in Figure 7e (30Hz  
volume) it is suggested that the channel indicated by the 
green arrow is connected. In Figure 7f (20Hz volume) one 
can observe that inside the selected area more 
information is visible, suggesting the existence of more 
channels and faults. 

The example with real seismic data shows that although 
Partyka et al.’s method recovers much more information 
from data than conventional processing, the analysis of 
the results must be very rigorous and good knowledge 
about the geological model involved is required. 
Therefore, this technique may be more suited to refine an 
existing model. 

Conclusions 

The method presented by Partyka et al., 1999 allows the 
identification of a greater number of seismic events of 
interest that were not well resolved or even identified in 
seismic volume submitted to conventional processing. As 
the complexity of the synthetic models increases, the 
technique becomes less accurate. Overall, this method 
seems to be more efficient for qualitative analysis. 

The S Transform produces satisfactory results for the 
localization of events in the time domain. In the spectrum 
it acts as a smoothing filter. This effect is quite visible in 
the third test presented here (Figure 6), where the model 
was contaminated with random noise. In the spectrum the 
noise was completely smoothed. These effects of the S 
Transform suggest that the method should be used for 
qualitative analysis. 
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Figure 6 – (a) Layer signature. (b) S Transform: Amplitude x Time. (c) S Transform: Time (
Transform Spectra. (e) Fourier Spectra. 

Figure 7 –  (a) Location of the slices in the original volume. (b) Channels and faults in the cross se
10Hz volume. (e) 30Hz volume. (f) 20Hz volume.  
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