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Abstract

Geophysical inversion is quite a challenge. Many different
methods and strategies have been developed in the past
decades. Global methods like simulated annealing and
genetic algorithms do not depend on an initial model,
although they may be time consuming using a huge
number of fitness evaluations. Local methods such
Gauss-Newton require a ’good’ start model and may be not
convergent to the global minimum of the objective function.
In this paper we evaluate the use a band-tridiagonal
preconditioner in the multiple reweighted least square
inversion method (MRLS) to the seismic waveform
inversion. The MRLS inversion method is a type-gradient
method that generates many candidate models for each
sensitivity matrix, exploring the model space in a very
effective way. A numeric example shows that the inverted
model has better fitness and may be obtained with less
computational CPU time, when compared to the results
given by the Gauss-Newton approach.

Introduç ão

Due to the nonlinear nature of the seismic waveform
inversion problem, global optimization methods such as
simulated annealing and genetic algorithm have been
applied to these problems (Porsani et al, 2000, Sambridge
and Drikoningen, 1992, Sen and Stoffa, 1991). Here we
evaluate the use of the preconditioners in the linearized
inversion method named as the multiple reweighted least
square method (MRLS) proposed by Porsani et al. (2001)
to seismic waveform inversion with the aim of achieving
greater accuracy and reducing computational cost.

Following we summarize the MRLS method.

Consider the geophysical model of N parameters
represented by m = (m1, . . . , mN )T . Let us write the
deviations between the observed data and the computed
one, ∆d(m , x) = d(x) − F (m , x), as a power function in
∆d defined as,

f(m, p, x) = |∆d(m, x)|p/2 . (1)

We now linearize f(m, p, x) ≈ f̃(m, p, x), by expanding in
a Taylor series about the current model, mk by retaining
only the first derivative term. By using vector and matrix
notation the resulting equation can be represented as,

f(m, p, x) ≈ f̃(m, p, x) = fpk − WpkGk∆m , (2)

where Gk is the sensitivity matrix, ∆m = m − mk is the
parameter vector correction, fpk = f(mk, p, x) is the vector
of the data deviation at the observation positions
xi , i = 1, · · · , M , and Wpk is a weighting diagonal matrix
whose elements may be computed as,

kwii =
p

2
sgn(∆d(mk, xi))|∆d(mk, xi)|

p/2−1 . (3)

We note that f̃(m, p, x) in Eq. (2) is a linear function of ∆m,
and a solution can be obtained by solving the linear
system of equation in the LS sense,

(WpkGk)∆mk = fpk . (4)

We note that for small ∆d and p < 2, kwii may become
very large. To avoid the implied singularity in the
computational algorithm a dumped LS approach may be
used. For any value of p (p 6= 0) the dumped LS solution
can be obtained and the expression for updating the
current model may be written,

mk+1 = mk + A
−1b , (5)

where,

A = A + λI , A = GT
k WT

pkWpkGk

b = GT
k WT

pkfpk

λ is a regularization factor and I is the identity matrix

The LS approach based on Eq. (5) can be seen as an
iterative procedure where the row i of the sensitivity matrix
is weighted by the factor kwii (Eq. 3) which is a function of
the deviation between the observed geophysical data and
the ones computed from the current model mk. By setting
p = 1, Eq. (5) is reduced to an iterative equation for the LS
method based on the L1 norm. By setting p = 2 into the
Eq. (5) WT

pkWpk = I, I being the identity matrix,
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WT
pkfpk = ∆d(m, x) and it is reduced to the classical L2

norm solution for the LS method,

mk+1 = mk + (GT
k Gk)−1GT

k ∆d(mk, x) .

Eq. (5) provides more flexibility to the LS method. During
the inversion it allows us to weight the deviation by using a
fixed or variable exponent p in each iteration. For a given
sensitivity matrix the update of the current model depends
on p. In general we do not know the probability distribution
function of the error in the data and consequently there is
no reason to prefer one to another norm, say L2 (p = 2) or
L1 (p = 1) or any other fixed value of p to drive the
inversion method. For many inversion problems in
geophysics the computational cost for solving the linear
system is significantly smaller than the one for generating
the sensitivity matrix Gk. For those inverse problems the
use of Eq. (5) with multiple values of p could be of
extraordinary importance once the sensitivity matrix does
not depend on p, and once formed cam be used for many
values of p.

The inversion conducted by means of Eq. (5) by using
multiple values of p in each step was named as the
multiple reweighted LS (MRLS) inversion method.

From Eq. (5) we can observe that the value p only affects
the Wpk matrix and the vector fpk. For each current model
and for each value of p a different solution can be derived.
This means that a different point in the model space can be
found to update the current model. By using Np different
values of p at each iteration, and by solving Eq. (5) Np

times, Np different possibilities to update the current model
can be calculated. By evaluating the fitness value for each
candidate model we can select as the current model the
one which presents the best performance. The full steps of
the MRLS algorithm and numerical examples are
presented in Porsani et al. (2001), Santos, et al.(2005).

Fitness Evaluation

In the numerical examples presented, for the fitness
evaluation we have used the function given below.

Φ(m) =
2

∑N
j=1

d(xi)F (m, xi)
∑N

j=1
d(xi)

2 +
∑N

j=1
F (m, xi)

2
. (6)

Band-tridiagonal preconditioners

Let us to consider the system of normal equation to be
solved,

Ah = b. (7)

Matrix A may be written as A = T + R where T is the
band-tridiagonal matrix that has a non-zero main diagonal

principal {a} e non-zero co-diagonals and {c} defined as
follows:

Ti,j =





Ai,j , |i − j| = 0,

Ai,j , |i − j| = m

0 , otherwise.

The Levinson recursion may be exploited to develop
efficient algorithm even when the coefficient is a full matrix
(Porsani and Ulrych, 1991) without Toeplitz structure. By
using an efficient and recursive Levinson-type algorithm
(Porsani and Oliveira, 2005) we can find a triangular matrix
F such that,

FT TF = D

where D is a diagonal matrix. The matrix F may be used to
preconditioner the original system as following,

(FT
AF)(F−1h) = Fb

A1h1 = b1

(8)

where, 



A1 = FT
AF

h1 = F−1h

b1 = Fb

The Jacob normalization

A diagonal matrix E may be formed taking the square root
of the elements of the diagonal of the matrix A1.
Analogously to Eq. (8), matrix E may be used to normalize
the system A1h1 = b1, generating a new system,

Â ĥ = b̂ ,





Â = ET A1E

ĥ = E−1h1

b̂ = Eb1

(9)

We remark that the matrix Â has unitary elements into the
main diagonal. By solving equation (9) the solution vector
h of the original system may be obtained,

h = FEĥ (10)

The preconditioned conjugate gradient algorithm

The preconditioned conjugate gradient (PCG) algorithm,
used to solve Eq. (10), is defined by the following iterative
equations,

hj+1 = hj + αvj

vj+1 = Ã
−1

gj+1
+ βvj

where vj is an auxiliary vector and gj+1
= −b̂ + Âh j+1 is

the residual of the approximate solution hj+1. The
parameter α on equation for hj+1 is calculated such that

gT
j+1

vj = 0. The matrix Ã
−1

represents the approximate

inverse of the matrix Â . The parameter β on equation for
vj+1 ensures that vT

j+1Âv j = 0. One may show that if

Ã
−1

= Â
−1

, the PCG method converges in a single step.

On the other hand, if Ã
−1

= I then the algorithm PCG
reduces to the conjugate gradient (CG) algorithm, where
the solution of a linear system of size N can be found in N
steps.
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Iterative refinement into the PCG algorithm

As previously mentioned, the number de steps of the PCG
algorithm is directly related with the degree of
approximation used in the solution of the system

Aq j+1 = gj+1
.

Considering Â = I + R̂, the inverse of Â may be
approximated by using polynomial division. The following
iterative equation may be be derived,

qj+1,k+1 = gj+1
− qj+1,k − R̂qj+1,k (11)

k = 0, . . . Niter. Note that for k = 0, qj+1 = gj+1
and the

algorithm reduces to the CG algorithm. This procedure fits
in the framework of the Iterative Refinement (Kincaid and
Cheney, 1996). To get convergence the radius of R̂ should
be less than 1.

Methodology

The inversion was performed using the MRLS method
testing three types os preconditioners to solve the systems
of NE generated at each step of the algorithm:

• Direct solution of the NE without preconditioning
(indicated by CG in figure 2);

• Solution of the NE preconditioned with the Jacob
normalization (indicated by CG(1);

• Solution of the NE with the band-tridiagonal
preconditioner for m=1 and m=10 (indicated by
CG(1,2) and CG(1,10), respectively).

The implementation of the MRLS algorithm is summarized
below:

(i) We start with a initial model and set the initial range for
the p values, 1 < pi < 4;

(ii) generate the sensitivity matrix;

(iii) for each pi value we form the corresponding linear
system and solve it in the LS sense;

(iv) use the solution to generate a candidate model to
substitute the current ones;

(v) evaluate the fitness of the candidate models;

(vi) substitute the current model by the candidate of best
fitness;

(vii) use the value of p associated to the best candidate
model (pc) to update the range of p values
0.8pc < pi < 1.2pc;

(viii) restart from step (iii) and continue up to a
convergence or a stop criterium is satisfied.

In the numeric example presented we have used a fixed
number of 7 values of p. At each step of the MRLS method
the system of NE, Ah = b is transformed into Â ĥ = b̂ by
applying the Jacob or the preconditioners:
band-tridiagonal plus the Jacob. The modified system is
solved using the CG algorithm. The LS desired solution for
the original system is obtained using Eq. (10).

Numerical results

In this optimization problem plane wave seismograms are
modelled (Kennett, 1983) and the model parameters to be
found are the P wave velocity, impedance and Poisson’s
ratio.

Figure 1 shows a synthetic seismogram associated with a
10 layers model (total of 30 parameters), corresponding to
the ‘observed data’ to be inverted. Forty plane wave
seismograms for ray parameters of 0.0 to 0.39 s/km every
0.01 s/km with a bandwidth of 8 to 80Hz were used in the
inversion. The modelling included only primary
compressional wave reflections but did include loss due to
shear conversion. No internal multiples or converted
phases were included as observed arrivals.

The effect of the preconditioners into the CG algorithm,
during the solution of a particular system of NE, is
illustrated in the Figure 2. The reduction of the norm of the
residual vector ||gj ||

2, is displayed as function of the
iterations of the CG algorithm. The iterations stops when
the norm of the residua reach 10−20. The solution using
the brute CG algorithm (without preconditioner) require
more then 100 iterations and the convergence curve is
very unstable. The other curves shows the stability and the
efficacy of the preconditioners, and the solution is obtained
with less than 15 iterations.

The effect of the number of iteration used in Eq. (11)
(degree of refinement) coupled with the use of the
preconditioners is illustrated by figure 3. The number of
iteration in the PCG algorithm decrease when we increase
iteration (refinement) to calculate the auxiliary vector qj+1,
which is equivalent to improve the approximation of the
inverse.

A full inversion was performed using the MRLS algorithm
exploring 7 differents candidates models for step as
described previously. The convergence is compared with
the conventional Gauss-Newton (GN) approach using fixed
value of p (p = 2). Figure 4 shows the convergence plots
for the best candidate models generated by the MRLS
algorithm (Lp) and the GN (L2) approach. The fitness
value (eq. (6)) of the best model is plotted for each step of
the MRLS algorithm. Note the improved performance of
the Lp fitness compared to L2.

The CPU time spent on the MRLS inversion is presented
in table 1. The use of preconditioners reduces the
computational cost in all three cases tested, compared
with the case where no preconditioner was not used, i.e.
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the CG case.

METHOD PRECONDITIONER CPU TIME (s)
CG 286.33
CG(1) Jacob normalization 280.27
CG(1,2) Tridiagonal (m=1) + Jacob 277.95
CG(1,10) Tridiagonal (m=10) + Jacob 282.59

Table 1: CPU time spent on the MRLS inversion
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Figura 1: Synthetic plane wave seismograms used as the ’ob-

served’ data.

Conclusions

We evaluate the use of band-tridiagonal preconditioners in
the solution of systems of normal equations associated
with the 1D seismic waveform inversion based on the
multiple reweighted least-square method. The numeric
experiment demonstrate that the preconditioners gives
numeric stability to the solution and reduce the number of
iteration in the conjugate gradient algorithm. The full
inversion shows a small computational reduction in the
CPU time. The results are promising to encourage
additional research.
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Figura 3: Reduction of the number of iterations of the PCG algo-

rithm as function of the degree of refinement used to evaluate Eq.

(11). Note that for k = 0 we have the CG algorithm.
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