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Abstract

It is common to find problems in handling data that falls
on a nonequally spaced grid. Then, we say that is neces-
sary making an uniform resampling, i.e., interpolating the
nonuniform samples of a sign in a set of equally spaced
points.

In this work, it is first shown that the resampling problem
can be formulated as a problem of solving a set of linear
equations Ax = b, where x and b are vectors of the uni-
form and nonuniform samples, respectively, and A is a ma-
trix of the sinc interpolation coefficients [Rosenfeld (1998)].
The solution for this system is given by the pseudoinverse
matrix which is computed using singular value decomposi-
tion (SVD) in a process that is called Uniform ReSampling
(URS). In large problems, the computation of the pseudoin-
verse is impractical.

Using the fact that the contribution of the b(i)’s in the com-
putation of the x(j)’s, when they are distant, is very small,
Rosenfeld created an algorithm that was called Block Uni-
form ReSampling (BURS). Such algorithm uses only a lim-
ited number of points around t(j), point of the uniform grid,
to calculate each uniform sample x(j), decomposing thus
the problem into solving a small set of linear equations for
each uniform grid point. These equations are a subset of
the original equations Ax = b and are once again solved
using SVD. The final result is both optimal and computa-
tionally efficient. A result is presented to illustrate.

Introduction

It is common to find problems in handling data that falls on
a nonequally spaced grid. Then, we say that is necessary
making an uniform resampling. In the most of times, this
problem occurs because of the algorithms that are based in
the discrete Fourier transform (DFT), require that the sam-
ples be over a Cartesian grid.

In the next section, it is shown that the resampling prob-
lem can be formulated as a problem of solving a set of
linear equations Ax = b, and in the other sections the Uni-
form ReSampling and (URS) the Block Uniform ReSam-
pling (BURS) algorithms [Rosenfeld (1998)] are presented.
The last one is both optimal and efficient. The results are
shown to be of excellent quality.

Problem Formulation

Let us consider a continuous real function, sampled in a fi-
nite set of nonequally spaced points, {τ1, τ2, . . . , τm}. The
uniform resampling consists in to find an approximation to
the function in an uniform spaced set of points, i.e., to
approximate f(tj), tj = t0 + j∆t, t0 ∈ IR, j ∈ N =
{1, 2, . . . , n}.

Such problem can be solved using Shannon’s theorem
[Oppenheim & Schafer (1989)],

Theorem Let f be a band-limited real function, i.e., its
Fourier transform is zero above some cut frequency Ω. If

∆t <
1

2Ω
, then for any t0 ∈ IR

f(τ ) =
∑

j∈ZZ

f(t0 + j∆t)sinc
(

τ − j∆t − t0
∆t

)

, (1)

where

sinc(x) =
sin(πx)

πx
. (2)

Formula (1) is readily extend to higher dimensions by re-
placing the sum by a multiple sum and the sinc function by
a product of sinc functions.

Using Shannon’s theorem, for each τi, i ∈ M =
{1, 2, . . . , m} , we can approximate

f(τi) ≈

n
∑

j=1

f(tj) sinc
(

τi − tj

∆t

)

, (3)

The set of equations above form a system of linear equa-
tions

Ax = b, (4)

where the elements of the matrix A ∈ IRm×n, of the vector
x ∈ IRn and of the vector b ∈ IRm are given, respectively,
by aij = sinc((τi − tj)/∆t), xj = f(tj) and bi = f(τi),
i ∈ M , j ∈ N. Thus, our problem is one of solving a set of
m linear equations with n unknowns, Eq. (4), to determine
x.

In general, the matrix A is not square. Therefore, this sys-
tem must be solved in the least square sense, as we shall
see in the next section.

Uniform ReSampling (URS) Algorithm

The simplest solution to the equation (4) is given by
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x = A+b, (5)

where A+ denote the n × m (Moore-Penrose) pseudoin-
verse of A [see, e.g., Trefethen & Bau (1997)]. The pseu-
doinverse A+ provides the optimal solution to the equation
Ax = b in the minimal-norm least-square sense.

Computation of the pseudoinverse A+ is performed us-
ing singular value decomposition (SVD), which is standard
component of most mathematical software packages.

Although Eq. (5) is an optimal solution, it has two inherent
problems: first, the computation of A+ becomes impracti-
cal when the dimensions of A are too large. In the one-
dimensional case, when m e n are on the order of sev-
eral hundreds, inversion is practical. Second, each uniform
sample, say xj , is calculated by multiplying the jth row of
A+ by the vector b, i.e., m multiplications (and m − 1 addi-
tions) are involved. Using the fact that measurements that
are distant from the point tj will have coefficients with small
magnitude, it was introduced an algorithm that includes
only a limited number of terms in this computation. In the
following section, this algorithm is desenvolved [Rosenfeld
(1998)].

Block Uniform ReSampling (BURS) Algorithm

The new algorithm finds a solution of the form x = A+b, for
the Equation (4), where each row of the matrix A+ contain
mostly zeroes and only a restricted number of coefficients,
concentrated in the neighborhood of tj , are nonzero.

This is achieved of the following form: instead of consider-
ing all the m nonuniform points, we just consider the points
τ ′

is within a radius δ from tj , resulting a set of m̄ points,
that will be used in the computation of the xj . Similarly,
we select all Cartesian grid points within a radius ∆ from
tj , with ∆ ≥ 1.5δ, resulting a set of n̄ points, which will
be estimated [Rosenfeld (1998)]. As it was made before,
using the participating measurements we obtain the matrix
Ā ∈ IRm̄×n̄, which is a submatrix of A.

After that we compute the matrix Ā+, which is the n̄ × m̄
pseudoinverse matrix of Ā. Then we isolate the row of Ā+

that corresponds to tj . This row contains m̄ elements,that
are now inserted into the appropriate locations in the A+

matrix. That is, the entire jth row of the A+ matrix is set to
zero, with the exception of these m̄ coefficients, which are
placed in the positions corresponding to their respective
measurements (in the b vector). It is made for each point
tj . The result is an n×m matrix A+, which contains mostly
zeroes, except for a narrow band along its “diagonal.”

The BURS algorithm is very efficient because it changes
the problem of computing the pseudoinverse of a large ma-
trix by computing n pseudoinverse matrixes shorter. More-
over, the majority of the elements of the matrix A+ is zero
and the solution is given by x = A+b, which has easy com-
putation.

In the next sections, two examples are presented to show
the quality of the methods previously described.

Numerical Experiments I

As a first one-dimensional example, we took the function
f(x) = 10 sin(x) cos(10x)+cos(3x)−sin(2x) sampled onto
m = 256 nonuniform points. The image was reconstructed
onto n = 128 point Cartesian grid using URS and BURS al-
gorithms. As it was expected, the results were satisfactory.
The URS and BURS algorithms are shown in Figure 1 and
2 respectively. In the URS algorithm, it was calculated the
pseudoinverse of an (m × n) matrix while in the BURS al-
gorithm it were calculated 128 pseudoinverses which sizes
were from 5 × 5 to 17 × 9.
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Figure 1:Uniform resampling of the function f(x) =
10 sin(x) cos(10x) + cos(3x) − sin(2x) using the URS
algorithm.
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Figure 2:Uniform resampling of the function f(x) =
10 sin(x) cos(10x) + cos(3x) − sin(2x) using the BURS
algorithm , δ = 0.17 and ∆ = 0.30.

After that, we took the same function, but now, sampled
onto m = 4096 nonuniform points. This function was re-
sampled onto n = 2048 equally spaced points using BURS.
It were computed 2048 pseudoinverses, which sizes were
from 23×18 to 64×35 and the result can be seen in Figure
3. The URS algorithm was impractical computationally for
this problem.
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Figure 3: Uniform resampling of the function f(x) =
10 sin(x) cos(10x) + cos(3x) − sin(2x) using the BURS
algorithm, δ = 0.04 and ∆ = 0.07.
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The last example shows the efficiency of the BURS algo-
rithm in large problems.

Numerical Experiments II

To show the potential of the interpolation scheme for seis-
mic purposes, we depict in Figure 4 a single interface ho-
mogeneous acoustic model and the respectives rays and
traces for one shot with receivers at non-equally spaced
receiver locations. Both algorithms, URS and BURS were
applied to simulate the corresponding seismic section for
equally spaced receiver locations. Figure 5 shows the re-
sults, were we can observe a better performance for the
BURS algorithm.
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Figure 4: (a) Acoustic model and rays for a shot with
receivers at non-equally spaced points. (b) Corresponding
seismic section.

Conclusions

It was seen a new gridding algorithm that is both optimal
and efficient. The original problem of resampling over a
uniform grid was first formulated as a problem of solving
a set of linear equations. These solution is obtained us-
ing the pseudoinverse. This method, the URS algorithm,
is optimal in the minimal-norm least-squares sense. The
BURS algorithm is a suboptimal counterpart of the URS
method, which is efficient and practical. Only a limited num-
ber of measurements are used to generate each uniform
grid point. An appropriate set of linear equations is con-
structed and subsequently solved using SVD.

The new method was applied in resampling of seismo-
grams. From a seismic section, which the receivers were

not equally spaced, it were used URS and BURS algo-
rithms for simulate a seismic section with equally spaced
recievers. It was shown that the BURS algorithm gave bet-
ter results.
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Figure 5: (a) Modeled seismic section for equally spaced
receiver locations. (b) Interpolated section using URS. (c)
Interpolated section using BURS, δ = 300 and ∆ = 550.
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