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Abstract

Independent and principal component analysis are used
to  find  a  series  representation  of  data.   Principal
component  analysis  finds  a  compact  representation  of
the data, while independent component analysis finds a
sparse  representation.   The  data  are  corrupted  with
additive random noise, and the coefficients in the series
expansion are filtered, removing the portion of the series
that  is  more  indicative  of  noise  than  signal.   For  the
series  representation  of  the  data  found  using  principal
component  analysis,  the  filter  consists  of  a  simple
truncation  of  the  series.   For  independent  component
analysis, a Bayesian filter is applied to the coefficients of
the series expansion; thus, allowing for prior knowledge
to be applied to the distribution of the coefficients.

Introduction

Consider the series expansion

x=∑
i=1

m

y i pi=Py  (1)

where  x∈ℜm  and  yT=[y1 y2 ⋯ ym]  are  random
vectors  ( yi  are random variables),  and  pi∈ℜ

m  is  the
ith column of P∈ℜm×m .  Here, pi  are the basis vectors

of  the  expansion,  while  yi  are  the  corresponding
coefficients.   In  other  words,  the  vectors  pi  span  a
subspace containing  x , and  y  is the projection of  x
onto the basis vectors  pi .  In this paper, both  yi  and
pi  are  computed  from  x  using  either  principal  or

independent component analysis (PCA or ICA), with PCA
providing  a  compact  representation  of  x ,  and  ICA
providing a sparse representation.

For  the  purpose  of  noise  suppression,  y  is  filtered.
When  y  is  computed  using  ICA,  a  Bayesian  filter  is
applied, and when  y  is computed using PCA, the filter
simply truncates the series in (1).  That is, the methods of
PCA and ICA give a prior indication for the distribution of
y , and filters are designed to use this prior information

to  shrink  the  coefficients y i ,  thereby  removing  (or
suppressing) the portions of the subspace that are more
indicative of noise than signal.  These noise suppression
techniques are applied to a toy seismic example.  Other
authors have applied the technique to noise attenuation

in  natural  scenes  (e.g.  Hoyer,  1999;  Hyvärinen  et  al.,
2003; Olshausen and Field, 1996)1.

The Model

The series in (1) requires data for the realizations of x .
From  x ,  both  P  and  the  realizations  of  y  are
computed.

We  form several  realizations  of  x  by extracting  small
(e.g.  16×16  pixel)  image  patches  I  from  a  seismic
gather.  Presently, we let

I=∑
i=1

m

y iP i  (2)

be the expansion of  I  onto the basis patches  pi , and
for  convenience,  we coax  (2) into  the  form  of  (1).   In
particular,

● An  image  patch  I ,  from  (2),  is  mapped,  via
lexicographic  reordering,  to  one  realization  of  x  in
(1).

● The basis patches  P i , from  (2), are mapped, via a
lexicographic reordering, to the basis patches  pi  in
(1).

● The  coefficients  yi ,  from  (2),  are  simply,  the
elements in one realization of y  in (1).

For  example,  consider  image  patches  taken  from  the
seismic  gather  in  Figure  1a  such  that  I∈ℜ16×16  (i.e.
16×16  pixels).  In this case, both x  and y  would have
256  dimensions.   If  several  such  image  patches  are

collected,  then  both  x  and  y  will  have  several
realizations, one for each patch.

Both  pi  and  y  are  computed  using  a  linear
transformation of x ,

yi=bi
T x y=Bx (3)

where bi
T  is a row of B , and is chosen to satisfy some

statistical  criteria  for  y i .   In  the  case  of  PCA,  the
variance  of  y i  is  maximized  providing  a  compact
representation of x , and in the case of ICA, the entropy
of  y i  is minimized providing a sparse representation of
x .

Compact Representation of x

As already mentioned, a compact representation of x  is
achieved  using  PCA,  and  is  often  used  to  weed  out
redundancies, or elicit similarities, from data (e.g. Freire
and Ulrych, 1988; Pentland and Turk, 1991; Ready and

1 The work of Olshausen and Field (1996) stems from
research involving the mammalian visual cortex (e.g. Field,
1996; Bell and Sejnowski, 1997).  Originally a statistical
model of the cortex was built using a compact
representation.  However, a sparse representation proved
more suitable.
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Wintz, 1973).  Here, PCA computes the components of
the  desired  expansion  (1) through  the  computation  of
principal components

yi
pc =bipc 

T
x  ypc =Bpc x

where bipc 
T

 is  the  ith  row of  Bpc ,  and is chosen to
explain  the  variance  of  x  with  as  few  dimensions
(principal  components)  as  possible.   PCA  finds  bi

pc 

which  are  mutually  orthogonal;  thus,  once  bi
pc  are

computed,  the  basis  vectors  pi
pc   in  (1) are  trivially

found.  For the remainder of this section, the superscript
pc   is dropped; however, it should be remembered that

the  solution  discussed  is  the  principal  component
solution.

For the principal component solution, bi  are found such
that vary i  are maximized subject to some constraints.
Namely  that  bi

T bi=1 ,  that  the  second  principal
component  is  uncorrelated  with  the  first,  the  third
uncorrelated with both the first and the second, and so
on.  The first of these constraints is built explicitly into the
cost function using a Lagrange multiplier.   Constraining
the principal components to be uncorrelated is implicit in
the formulation and, as will be shown, falls nicely out of
the mathematics.  Hence, the appropriate cost functions
(for maximization) are

Á bi = var y ii 1−bi
T bi 

= E y i
2i 1−bi

T bi 
= E [ biT x  biT x T ] 1−bi

T bi 
= E biT xxT bi i 1−bi

T bi 
= bi

T Cxbii 1−bi
T bi 

 
(4)

(5)

where  i  are  Lagrange  multipliers  and  C x  is  the
covariance matrix of  x .   In  (4), we assume  E yi=0 ;
that is, varyi=E yi

2−E yi
2 .  This assumption is trivial

since  the  mean  of  x  is  easily  set  to  zero  and
Ey i=E biT x =biT E x .  Taking the gradient of (5) gives

∇Á bi=2C xbi−2ibi ,  

and setting  this  result  to  zero yield  the extrema of  the
cost functions,

C xbi=ibi .  (6)

In (6), we recognize an eigen problem where bi  are the
eigenvectors  of  the  symmetric  matrix  C x ,  and  are
therefore mutually orthonormal.  Hence,

E y iy j=bi
T C xb j=jbi

T b j={0 ; i≠j
j ; i=j}.  (7)

In  (7), we illustrate two ideas.  First, we confirm that the
principal  components are uncorrelated;  and second, we
demonstrates  that  the  variance  of  the  ith  principal
component  yi=bi

T x  is the  ith  eigenvalue  i .  Hence,
ordering the pairs of eigenvectors and eigenvalues in the

usual  fashion  so  that  12⋯m  completes  the
solution.

Since bi
T bi=1 , B  is orthogonal and

x=Py=PBx⇒PB=I⇒PBBT=BT=P  

Therefore,  pi=bi
T ,  and  PCA  provides  a  means  for

computing both P  and y  in (1).

Sparse Representation of x

A sparse representation of x  is achieved using ICA, and
in the literature, is known as sparse coding (e.g. Hoyer,
1999).  ICA is commonly used for source separation (e.g.
Common,  1994),  and  its  description  is  most  readily
understood  from  this  point  of  view.   However,  in  this
paper,  we  are  only  interested  in  finding  the  series
expansion in (1), and a full description of ICA, in terms of
source  separation,  is  left  to  Kaplan  (2003)  and  the
interested reader.  Analogous to PCA, ICA computes the
components  of  the  desired  expansion  (1) through  the
computation of independent components,

yi
ic =biic  

T
x  yic =Bic x

where biic  
T

 is the ith  row of Bic  , and is chosen such

that  the  independent  components  yi
ic   are,  indeed,

statistically independent and have minimum entropy.  As
is the case for PCA, there is a simple relation connecting
bi
ic   and  the  basis  vectors  pi

ic   required  for  the
expansion in  (1).  To simplify notation,  we, again,  drop
the  superscript  ic   for  the  remainder  of  this  section,
while  keeping  in  mind  that  we  are  computing  the
independent component solution.

It can be shown, via the central limit theorem, that if  yi

are found so that they are maximally non-Gaussian, then
they will also be independent.  Here, a measure central to
information  theory,  called differential  entropy (Shannon,
1984),  is  considered.   It  is  well  known that  if  only  the
mean and variance of a continuous random variable  y
are  given,  then  y  has  maximum  differential  entropy
exactly when it has Gaussian statistics.  Conversely, it is
maximally non-Gaussian when it  has minimum entropy.
Therefore  y  will be an independent component exactly
when it has minimum entropy.

Differential entropy is defined,

h pY =−∫−∞
∞

pY y ln pY y dy  

where  in  the  context  of  ICA,  y  is  an  independent
component.  The subscript  i  is dropped for the sake of
clarity.   Next,  we  consider  an  estimate  of  a  measure
related to entropy, called negentropy J pY y   such that
(Hyvärinen, 2001)

J pY y =hp−hpY y≈
1
2∑i=3

l

ci
2  (8)

where  c i=E riy ,  ri  and  p  is  a  Normal
distribution with the same mean and variance as pY y .
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Hence,  negentropy  measures  the  distance  from  a
Gaussian random variable, and minimizing the entropy of
y  is equivalent to maximizing its negentropy.  Therefore,

independent  components  correspond  to  the  maxima of
(8).

Due to the relation between negentropy and independent
components,  the  ICA  problem  is  reduced  to  one  in
optimization with an associated cost function measuring
negentropy. Here, this optimization problem is discussed,
and the utility of PCA in terms of ICA is explained.

PCA, used as pre-processor, allows for the derivation of
much  needed  constraints  for  the  optimization  problem.
Given zero mean mixtures x , let

z=x  

where  z
T=[z1 z2 ⋯ zm ]  are whitened mixtures such

that  E z =0 ,  E z zT =I  and  I  is the identity matrix.
That is, the random variables zi , i=1m  are mutually
uncorrelated.   The  utility  of  z  is  illustrated  by
understanding  the  relation  between  uncorrelated and
independent.   Namely,  that  independent  implies
uncorrelated.   Consider,  for  example,  two  random
variables,  y1  and  y2  that  follow  the  bivariate  pdf
pY 1,Y 2

y1,y2 ,  with  marginal  pdfs  pY 1
y1  and  pY 2

y2 .
Also,  let  g1y1  and  g2y2  be  arbitrarily  defined
functions.  The random variables, y1  and y2  are said to
be uncorrelated if

E y1y2=Ey1E y2.  

Further,  if  y1  and  y2  are  independent,  then
pY 1,Y 2

y1,y2=pY 1
y1 pY 2

y2 .  Thus,

E [g1y1g2y2 ] = ∬−∞

∞
g1y1g2y2 pY 1,Y 2

dy1dy2

= ∫−∞
∞

g1 pY 1
dy1∫−∞

∞
g2 pY 2

dy2

= E [g1y1 ]E [g2y2 ] (9)

Therefore, uncorrelated is a special case of independent
where  g1y1=y1  and  g2y2=y2 ;  and  hence,
independent implied uncorrelated but uncorrelated does
not  imply  independent.   Since  the  goal  of  ICA  is  to
produce components that are independent, they are also
uncorrelated and under orthogonal  transformations they
stay  that  way.   Therefore,  an  appropriately  chosen
rotation  transforms  uncorrelated  components  into
independent  components.   This  immediately  drops  the
degrees of freedom in the optimization problem by one.

An appropriate choice for   is easily found such that

=§−1 Bpc T  (10)

where  Bpc  was found previously  in  our  discussion  of
PCA,  §=diag 1 ;2 ;;m   and  i  is the variance
of the ith  principal component (see (7)).

Next, define a matrix Q  such that y=Qz , q i
T  is the ith

row of  Q  and  yi=Qi
T z  is  an independent component

exactly when q i  is chosen such that  yi  has maximum
negentropy.   Hence,  an  appropriate  cost  function  (for
minimization) is

Á q i=−J pY yi=−J pY q i
T z.  (11)

As  already  mentioned,  whitening  the  data  further
constrains the cost function.  In particular, recalling that
var yi=1 , E y i=0  and that independent components

are uncorrelated such that E y iy j=0 , i≠j  gives

E y iy j=q i
T C zq j=q i

T q j={0 ; i≠j
1 ; i=j}.  

Thus, the cost function need only be considered on the
surface  defined  by  q i

T q i=1 ,  and multiple  local  minima
may be found using orthogonality.

Hyvärinen (1999) presents a method for optimizing  (11)
which employs Newton steps in an iterative scheme.  In
particular,  (8) is  considered  using  only  one  term  in  its
series expansion which gives, for minimization,

Á q i=−
1
2 [E r yi ]2  

where  y i=q i
T z .   Using  approximative  Newton  steps,

Hyvärinen (1999) finds an iterative update rule for the ith

row of Q :

q i
k1 = E  r̈ yiq i

k−E  ṙ y iz 
q i
k1

∥q i
k1∥2

 q i
k1  (12)

The projection back onto the unit circle accounts for the
constraint q i

T q i=1 .  For the algorithm used in this paper,
all rows of  Q  are updated simultaneously.  That is, for
each iteration of the optimization routine, (i) Each row q i

T

of  Q  is updated according to  (12), and (ii) the rows of
Q  are  made  orthogonal  using  symmetric

orthogonalization such that

QQT Q−1 /2Q .  

Once an optimum  Q  is found,  P  is readily computed.
In  particular,  noting  that  Q  is  orthogonal,  y=Qz  and
z=x , we find x=−1QT y .  Hence, it follows from (1)

that P=−1QT .

As we will show in our toy seismic example, contrary to
the basis patched computed using PCA, the independent
component  solution  provides  basis  patches  with  some
semblance of structure.

Bayesian Filtering

The  previous  two  sections  provide  two  methods  for
computing  the  series  expansion  in  (1).   When  x  is

corrupted  with  additive  Gaussian  random  noise,  (1)
becomes

x=∑
i=1

m

y i pi=P y  
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where  y=yn  and  n  is representative of the noise.
To  use  (1) for  noise  suppression,  we  need  some
technique for filtering  y .   In the case of PCA,  ypc  is
computed to represent the data with as few dimensions
as possible; hence, simply setting ypc =0  for inm

should suffice.   For ICA, we expect  yic   to be sparse.
To  use  this  information,  we  follow  the  work  of  Hoyer
(1999) who uses Bayes formula to construct thresholding
functions.   When  applied  to  yic  ,  these  thresholding
functions  shrink  the coefficients,  suppressing  the noise
portion of the appropriate subspace.  In this section, we
consider the sparse representation of  x , and Bayesian
filtering.

Consider random variables y  and n  such that y=yn
.  Further, recall Bayes formula,

p y∣y =
p  y∣y  p y 

p  y   

where  p  y =∫−∞
∞

p y p  y∣y dy  is a constant.  Here, we

let  p  y∣y =pn y−y   where  n  is  random noise.   The
idea behind Bayesian filtering is to maximize the posterior
density  p y∣y   with respect to  y .  In particular, letting
n~N 0,n  gives

argmax
y

p y∣y=argmax
y

g y ; y   

where

g y ; y = 1

2¼n

exp− y−y 2

2n
2  p y   

It follows that

argmax
y

p y∣y=argmin
y [ 12n

2  y−y 2−ln p y ]  (13)

Defining a score function as  f y =−ln p y  ,  we find a
solution to (13) when
1

n
2 y−y ḟ y=0⇒y=y−n

2 ḟ y  (14)

For  example,  consider,  as  Hoyer  (1999)  does,  the
following pdf,

p y =c exp−ay2/2−b∣y∣  

where  c  is a constant,  and the parameters  a  and  b
are adjusted, allowing control over the sparseness of y .
In this case, the score function is

f y =−ln cay2/2b∣y∣.  (15)

Taking the derivative of (15) gives

ḟ y=ayb d
dy
eln y=ayb∣y∣

y
=ayb signy  

and applying this result to (14) gives

y=
signy
12a  y

signy −
2b.  

Finally,  we  let  signy =sign y ,  and  ensure  that  the
choice of b  does not flip the sign of the coefficients such
that

y= sign y
12a

max 0,∣y∣−2b.  (16)

We use  (16) to shrink the components of  yic  , and, in
turn, filter x .

Toy Seismic Example

To illustrate  the  methods,  we consider  the  simple  and
synthetic data in Figure 1a.  From this data, ICA and PCA
compute the terms in the series expansion in  (1).  The
basis patches  pi

pc   computed using PCA are plotted in
Figure 1d, and the basis patches  pi

ic   computed using
ICA are plotted in Figure 1e.

To filter the data using PCA, we simply use the first 26
principal  components.   That  is,  the  series  in  (1) is
truncated  after  its  first  26  terms.   The  result  of  this
filtering is shown in Figure 1b.   To filter  the data using
ICA, a Bayesian filter is applied to the coefficients of the
expansion  yic  .   The result  of  this  filtering  is  show in
Figure 1c.

Disscussion

This paper represents  a preliminary investigation of the
use of sparse coding in seismic data processing with an
application  to  noise  suppression.   However,  perhaps
more  interesting  than  the  application  of  noise
suppression is the nature of the basis patches produced
by  sparse  coding.   Salle  and  Olshausen  (2002)  and
Olshausen   et  al.  (2001)  discuss  using  these  basis
functions  for  a  wavelet  basis,  allowing  for  scaling  and
translation  of  the  basis  patches;  certainly  a  worthwhile
direction for further investigation.
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(a) (b) (c)

(d) (e)
Figure 1: (a) Hyperbolas corrupted with additive Gaussian noise. (b) The data in (a) filtered using PCA. (c) The data
in (a) filtered using ICA. (d) The basis patches produced using PCA. (e) The basis patches produced using ICA.
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