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Abstract

In this paper we present a method to automatically detect
stationary segments in well-log data sequences. This pro-
cess is carried out by searching for change points which
correspond to abrupt changes in the statistical nature of
the underlying process. For this purpose the we analyze
the behavior of the probability density functions (pdf) of two
adjacent sub-samples as they move along the original data
sequence. A statistical test is used to set a significance
level of the probability that the two distributions are the
same, thus providing a means to decide how many seg-
ments comprise the data by keeping those change points
that yield low probabilities. Examples using simulated and
real well–log data show that the results are in good corre-
spondence with what seems to be a reasonable segmen-
tation.

Introduction

Segmentation is an important data mining process. One
important application is the identification of locally station-
ary intervals, or, equivalently, the location of change points.
In this context, segmentation (also known as zonation) is
the dividing of a sequence into relatively homogeneous and
stationary intervals, such that each segment is distinctive
from the adjacent ones. Well logs can be subdivided into
relatively uniform segments that represent zones of con-
stant lithology (stratigraphic units and formations). Seg-
ment boundaries can be associated with abrupt changes
in the layering, and conform the limits of relatively stable
periods.

There are various strategies for addressing this segmen-
tation problem. Classical approaches include the detec-
tion of abrupt changes in the mean or in the variance. For
a brief description of these techniques see Davis (1986).
Other strategies are based on the use of spectral analy-
sis for identifying stationary intervals (Ligges et al, 2002).
The method presented here takes into account both the

mean and the variance, and also higher-order robust statis-
tics such as certain non conventional skewness and kur-
tosis measures (Velis, 2003). Essentially, a split window
is moved along the sequence and the probability density
functions (pdf) of the two adjacent half-windows are com-
pared. When a significant difference is detected, a change
point is identified. Smooth pdfs are estimated using the
maximum entropy method as described in Velis (2003),
which guarantees robustness when dealing with short data
sequences. Finally, a criterion for deciding which is the
number of segments that comprise the data is proposed.
The effectiveness of this strategy is supported by the anal-
ysis of various examples using simulated and real data se-
quences derived from well-logs.

The segmentation problem

Let ~r = (r1, r2, · · · , rN ) be the sequence of well-log data.
The objective of the segmentation process is to subdivide
this sequence into smaller segments so that each interval
is relatively locally stationary. That is, we look for the parti-
tion

~r = (~s1, ~s2, · · · , ~sM ), (1)

where ~sj , j = 1, · · · , M , is the subset of ~r given by

~sj = (rtj
, rtj+1, · · · , rtj+1−1), (2)

and M , M < N , is the number of distinct segments
that start at locations (t1, t2, · · · , tM−1), with t1 = 1 and
tM+1 = N + 1.

In practice the algorithm proceeds iteratively by searching
successive change points {tj} based on the assumption
that two adjacent intervals are distinct when the probability
density functions (pdf) of the data on each side of tj are
significantly different. For this purpose, a split window of
length 2W is centered at location tj , and the correspond-
ing pdfs are estimated and compared appropriately.

Here, W should be short enough to allow for the identifica-
tion of short stationary intervals. Thus, a robust pdf estima-
tion method that works well even for short data sequences
is required. The maximum entropy (MaxEnt) method with
moment constraints described in Velis (2003) produces
smooth non-parametric pdfs which are consistent with the
data. The approach utilizes robust statistics computed di-
rectly from the data to constrain the maximization of the pdf
entropy.

The strategy for carrying out the segmentation is based on
the sliding window approach, which consists on moving the
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Figure 1: Simulated random sequence (8400 samples) comprised of eight statistical independent segments. The
segmentation is indicated by gray blocks: true (top) and estimated (bottom). Table 1 shows the exact location of
the change points.

analyzing window along the whole sequence, and assign-
ing a change point when a significant difference between
the pdfs is observed. To avoid the assigning of change
points which are too close, we found it more appropriate to
look for a single change point at a time. Starting with j = 2
(recall that t1 = 1), we look for optimum change points
until the next change point that is added does not yield a
significant difference between the adjacent pdfs. These op-
timum change points correspond to the smallest probabili-
ties along the whole sequence for the current iteration.

The segmentation algorithm

Let t̂j be the current estimate of the j−th change point. Let
~u = (rt̂−W , rt̂−W+1, · · · , rt̂) and ~v = (rt̂, rt̂+1, · · · , rt̂+W )
be the two subsets of ~r spanned by the split window,
and p̂u(~u) and p̂v(~v) be the corresponding estimated pdf’s.
Rather than measuring the difference between p̂u and p̂v,
we measure the difference between their respective cu-
mulative distribution functions (cdf), P̂u and P̂v , using the
Kuiper test. The Kuiper test, a variant of the well known
Kolmogorov-Smirnov test (Press et al., 1992), quantifies
the difference between two cdfs. The Kuiper statistics is

V = max
a≤r≤b

(P̂u − P̂v) + max
a≤r≤b

(P̂v − P̂u). (3)

where a and b define the region of support of the cdf (usu-
ally the minimum and maximum values in the data set).
It turns out that the distribution in the case of the null hy-
pothesis that the two data segments come from the same
distribution can be calculated asymptotically, giving rise to
a formula that allows one to compute the significance level
(Press et al., 1992):

Probability(V > observed) = 2

∞
∑

i=1

(4i
2
λ

2 − 1)e−2i2λ2

, (4)

where

λ =
(

0.155 + 0.24
√ 2

W
+

√W

2

)

V (5)

The segmentation algorithm is a three stage process. In
the first stage the probability (4) is calculated for every pos-
sible change point location throughout the whole sequence

in the range (W,N − W ). In the second stage change
points candidates are added according to the following
strategy: at the beginning, the point with the smallest prob-
ability is selected as a candidate for the first change point,
yielding t2 and the new segmentation (t1, t2, t3), which is
comprised of two segments of lengths T1 and T2, respec-
tively. Then, a new change point is added by selecting
the smallest probability within the current longest segment
(largest Tj), giving rise to a new partition (t1, t2, t3, t4).
This process is repeated and new change points are added
(within the longest segments obtained so far) until all seg-
ments are shorter than a given minimum length, Tmin.

The third stage of the algorithm consists on discarding
those change points whose associated probabilities are
larger than a predefined threshold. Also, the change points
with largest probabilities in excess of a predefined number
of change points are deleted. Note that a large probability
is indicative of a high degree of confidence on the null hy-
pothesis that the two distributions are the same, so low val-
ues of probability are desired to obtain a high confidence
on the hypothesis that the two distributions are different.
Typical values are 95%-99%. To avoid too fine segmenta-
tions (i.e. two change points separated by a few samples),
a minimum separation ∆ between two consecutive change
points is forced by adjusting the search range accordingly.

Numerical examples

As a consistency check, we applied the segmentation al-
gorithm to the simulated sequence shown in Figure 1. This
sequence was generated by concatenating samples drawn
from eight different non-parametric distributions selected
so as to simulate a realistic reflection coefficient series
(Velis, 2003). In the segmentation process we set W = 250
and ∆ = 200, and change points were added until no seg-
ment was larger than Tmin = 200 samples. At the end
of the process, those change points with the associated
probability larger than 0.01 were discarded. This signifi-
cance level was chosen based on the inspection of Fig-
ure 2, where the probability (4) was plotted in ascending
order for all the identified change points. For values larger
than about 0.01, the probability of the null hypothesis that
the two distributions are the same increases rapidly. The
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Figure 2: Probability of the null hypothesis that the two distributions are the same. The plot reveals an abrupt
change at about 0.01, a value which is selected as a threshold to discard change points with high probabilities in
the third stage of the segmentation process.

pdf tj t̂j V Prob
1 1 - - -
2 1751 1751 0.360 0.00000
3 2601 2601 0.198 0.00162
4 4151 4179 0.196 0.00189
5 5051 5055 0.318 0.00000
6 5951 5957 0.469 0.00000
7 6451 6439 0.355 0.00000
8 7426 7487 0.230 0.00006

Table 1: The eight segments used to build the sequence shown in Figure 1 and their corresponding change points
(true and estimated), Kuiper statistics and associated probability.
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Figure 3: Reflectivity sequences. Vertical lines show the results of the segmentation algorithm.
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Figure 4: Probability of the null hypothesis that the two distributions are the same.

estimated change points are shown in Figure 1 and in Ta-
ble 1, along with the correct change points. All eight seg-
ments were identified correctly.

Figure 3 shows various reflectivity sequences obtained
from real density and sonic logs (sampling interval = 0.2 m).
Clearly, several distinct segments can be distinguished.
But it is very difficult to identify the exact location of the
change points, and to decide which is the number of locally
stationary segments that comprise each of the sequences.

The described algorithm was applied to carry out the seg-
mentation using fixed parameters. In all cases W = 100
and ∆ = 200. Results are shown in the same figure, where
19, 17 and 18 segments were identified for wells 1, 2 and 3,
respectively. Change points were added until no segment
was larger than Tmin = 200 samples. At the end of the
process, those change points with the associated proba-
bility larger than 0.02 were deleted. This significance level
was chosen based on the inspection of Figure 4, where
the probability (4) was plotted in ascending order for all the
identified change points. For values larger than about 0.02,
the probability of the null hypothesis that the two distribu-
tions are the same increases rapidly.

Conclusions

The detection of stationary segments in well-log data se-
quences can be carried out in a quasi-unsupervised mode
by searching for change points in the data. The MaxEnt

method using robust non-conventional statistics that mea-
sure shape provides an appropriate technique to estimate
the distributions that are to be compared. After estimat-
ing the distributions of the two halves of a moving window,
abrupt changes can be identified based on the analysis of
the probability of the null hypothesis that the two distribu-
tions are the same. The Kuiper test proved to be a use-
ful criterion to decide which change points lead to signifi-
cant differences between adjacent distributions. This pro-
vides a means of choosing the appropriate number of lo-
cally stationary segments that the data sequence can be
subdivided into.
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