
Image-wave remigration in elliptically anisotropic media
R. Aleixo and J. Schleicher, IMECC-UNICAMP, Campinas (SP), Brazil

Copyright 2005, SBGf - Sociedade Brasileira de Geofı́sica

This paper was prepared for presentation at the 9th International Congress of The Brazil-
ian Geophysical Society held in Salvador, Brazil, 11-14 September 2005.

Contents of this paper was reviewed by The Technical Committee of The 9th International
Congress of The Brazilian Geophysical Society and does not necessarily represents any
position of the SBGf, its officers or members. Electronic reproduction, or storage of any
part of this paper for commercial purposes without the written consent of The Brazilian
Geophysical Society is prohibited.

Abstract

The image-wave equations for the problems of depth and
time remigration in elliptically isotropic media are second-
order partial differential equations similar to the acoustic
wave equation. The propagation variable is the vertical
velocity or the medium ellipticity rather than time. In this
work, we derive these differential equations from the kine-
matic properties of anisotropic remigration. The objective
is to enable the construction of subsurface images that cor-
respond to different degrees of medium anisotropy. In this
way, “anisotropy panels” can be obtained in a completely
analogous way to velocity panels for a migration velocity
analysis.

Introduction

When a seismic migration is repeatedly carried out using
different velocity models, the images of the seismic reflec-
tors are positioned at different depth locations. To trans-
form these migrated reflector images from one to another
in a direct way, i.e., without going back to the original time
section, is a seismic imaging task that can be achieved by
a remigration, also known as velocity continuation or resid-
ual or cascaded migration (Rothman et al., 1985; Larner
and Beasley, 1987; Fomel, 1994). Is is not difficult to ac-
cept that when migrating several times with slightly differ-
ent velocity models, the sequence of images of a certain
reflector creates an impression of a propagating wavefront.
This “propagating wavefront” was termed an “image wave”
by Hubral et al. (1996). The propagation variable, how-
ever, is not time as is the case for conventional physical
waves, but the migration velocity. Moreover, due to the dif-
ferent kinematic behaviour, this image-wave propagation is
not described by a conventional (acoustic or elastic) wave
equation.

The kinematic behaviour of image waves as a function of
the (constant) migration velocity has been studied in time
(Fomel, 1994; Hubral et al., 1996; Fomel, 2003a,b) and
in depth (Hubral et al., 1996; Schleicher et al., 2004). In
this paper, we extend the idea of image waves to the rem-
igration of images as a function of the medium anisotropy.
For simplicity, we study the situation in media with ellip-

tical isotropy, which can be described with one additional
medium parameter. We choose the parameter describing
the medium ellipticity to be the ratio between the squares
of the vertical and horizontal velocities. We investigate the
variation (or “propagation”) of the reflector image as a func-
tion of this parameter.

Derivation of the image-wave equation

The variation of the position of a reflector image when the
medium anisotropy changes is to become the kinematics of
the image-wave propagation of the image wave as a func-
tion of the medium anisotropy. Therefore, we study the be-
haviour of a single point on the image of a seismic reflec-
tor when the medium ellipticity varies. This situation can
be understood in analogy to the propagation of a Huygens
wave emanating from a secondary source.

The derivation starts by the construction of the “Huygens
image wave”, i.e.,, the set of points that describe the loca-
tion of the reflector point after a variation of the propaga-
tion variable. Next, the coordinates of the original image
point are replace by derivatives, in this way constructing an
image eikonal equation the solution of which is the Huy-
gens image wave. In a last step, the simplest of all second-
order partial differential equations that generate this image
eikonal equation is identified as the image-wave equation.

Elliptically anisotropic medium. An elliptically anisotro-
pic medium is characterized by possessing a vertical sym-
metry axis and identical properties in all horizontal direc-
tions. Such a medium is described by four independent
elastic parameters.

Propagation velocity. For seismic imaging purposes, the
most important medium parameter is the velocity of seis-
mic wave propagation. Here, we need expressions for this
parameter for an quasi-P wave in elliptically anisotropic me-
dia. In a homogeneous elliptically anisotropic medium, the
propagation of a quasi-P wave takes place in a plane (Hel-
big, 1983). For simplicity, we assume this plane to be the���������

-plane. Therefore, we can treat the problem as a
two-dimensional one. All formulas below can readily be
extended to 3D by adding corresponding 	 components.
Within the

�������
�
-plane, the modulus of the group velocity

can be written in dependence on the propagation direction
according to � ���������������� ����������! �"� ��$#�#&%(' �*) � � (1)

where
� ���

and
� #�#

are diagonal elements of the density-
normalized elastic tensor. Moreover,

�
is the angle between

the propagation direction and the vertical
�
-axis.
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Figure 1: Zero-offset ray from source ACBEDF�G"HJI to a
single reflector point KLBMDNOG!PJI .
As a consequence of the medium anisotropy, the propaga-
tion velocities of the quasi-P wave depend on the propaga-
tion direction. In particular, there are different wave veloci-
ties in the vertical and horizontal directions. From equation
(1), we recognize that the vertical (

�Q�SR
) and horizontal

(
�T�VU�WYX

) velocities are given by� �[Z � #�# and \ �[Z � ��� ,
respectively.

Zero-offset configuration. We assume that the migrated
section to be remigrated has been obtained from zero-
offset (or stacked) data under application of a zero-offset
migration. The coincident source-receiver pairs where lo-
calized at a planar horizontal surface (

���]R
) at points^ ���`_a��RY�

(see Figure 1).

We denote by
�

and
�

the coordinates of a certain pointb
within the medium under consideration. Moreover, we

denote by c its distance from a source
^

, such that c � ����edC_�� � � � � . The propagation angle of a wave that
propagates from

^ �f�`_a�gR��
to
b �]�����g�
�

thus satisfies�h � �i���
W c and ���j� �k�S���id&_���W c . Therefore, we find the
following alternative representation for the modulus of the
group velocity vector in explicit dependence of the coordi-
nates of point

b
rather than the propagation angle

�
,� �����l�
�m� c � ���ndo_
� ��p��� � � ��$#�# %(' �*) �� c �rqjs ���ndt_�� � � � �vu ' �*) �xw (2)

Here, we have introduced the medium ellipticity s �� #�# W � ��� � � � W \ � .
Traveltime. With these results on the propagation velocity,
we are now ready to describe the traveltime y of a wave
that was emitted and registered at

^
and reflected at

b
.

From formula (2) for the propagation velocity as a function
of the coordinates of

b
, we obtain the desired traveltime asy �`_azl�����
��� X c� ���6�g�
� � X� q s ���nd{_
� � � � � u �*) � � (3)

where the factor 2 is due to the symmetry of equation (1),
i.e., � ������ � �� � U(� .

Remigration

Seismic remigration tries to establish a relationship be-
tween two media of wave propagation in such a way
that identical seismic surveys on their respective surfaces
would yield the same seismic data. One of these media is
the wrong velocity model used for the original migration.
The other medium represents the updated model within
which a new image of the subsurface needs to be con-
structed.

Variation of vertical velocity

Let us suppose that the original migration has been real-
ized with a model |4} with same ellipticity s as used in the
updated model | , but a different vertical velocity � } . In this
old model, the same diffraction traveltime y of equation (3)
is consumed by a different wave, reflected at a different
point

b } �~��� } �g� } � . It is therefore given by equation (3)
upon substitution of

�
,
�
, and � by

� } , � } , and � } .
Huygens image wave. To derive the desired image-wave
equation, we follow the lines of Hubral et al. (1996). Firstly,
we need to find the set of all points

b �������g�
�
in medium| for which the diffraction traveltime of equation (3) is

equal to the corresponding diffraction traveltime of pointb } ����� } �g� } � in medium |4} . In other words, we are inter-
ested in localizing the so-called Huygens wave for this kind
of image-wave propagation. This Huygens image wave
then describes the position

�J�����
of the image at the “in-

stant” � that “originated” at the “instant” � } at point
b } . For

this purpose, we equal the times y of
b

and
b } , resulting

in� ����������_�� � �O� s� � ���$dn_�� � � � � d s� �} ��� } dn_
� � dr� �} ��R w (4)

This equation represents a family of curves
������zl_��

that, for
a fixed

_
, connect all points

b
in model | that possess the

same diffraction traveltime y �`_azl�6�g�
� as
b } in model | } for

the same
_
.

The set of points
b

such that y �`_�z��6���
� is equal toy �`_azl� } ��� } � for all values of
�

and
�

is given by the en-
velope of this family of curves described by

� ����������_�� � � .
This envelope is the mentioned Huygens image wave that
represents the image in model | of point

b } in model |4} .
Application of the envelope condition � � W � _i��R to equa-
tion (4) yields the stationary value_�� � � � } d � �} �� � d � �} �

(5)

which, when substituted back in equation (4) leads to�p� �� }x� � �} d s�� �} ����d4� } � �� � d � �} w (6)

Equation (6) describes the position of the Huygens image
wave for depth remigration that was excited with the ini-
tial conditions

��� } �g� } z � } � . For an isotropic medium, where
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Aleixo & Schleicher 3s ��� , the above expression reduces to the one derived by
Fomel (1994) or Hubral et al. (1996).

The corresponding position of the Huygens image wave for
time remigration can be obtained from equation (6) by con-
verting depth to vertical time according to

��� �
� WYX and� } � � } � } WYX . The time domain version of equation (6) reads
then � � � � �} dt� s ���ndt� } � �� � d � �} w (7)

Eikonal equation. The Huygens image wave of equation
(6) describes the variation of a single point

b } on a reflec-
tor image under variation of the vertical velocity � , starting
at an initial velocity � } . To transform this expression into
one that describes the variation of any arbitrarily shaped
reflector image for arbitrary velocity variations, we need to
eliminate these initial conditions from equation (6). In other
words, we need to replace the constants

� } , � } , and � } in
equation (6) by derivatives, so as to describe image-wave
propagation for any set of initial conditions.

For this purpose, we introduce the image-wave eikonal� �V�������g�
� . An explicit expression for
�������g�
�

can be found
by solving equation (6) for � . By replacing � by

�������g�
�
in

equation (6), taking the derivatives with respect to
�

and�
of the resulting expression, and using them to eliminate

the constants
� } , � } , and � } from equation (6), we find the

following differential equation for
�

,� �� � s � �� d s �� � � ��R w (8)

Its solution for initial conditions
��� } �g� } z � } � is equation (6)

solved for � . This differential equation (8) is the image-
wave eikonal equation for depth remigration in elliptically
anisotropic media. It describes the kinematics of image-
wave propagation for any arbitrary set of initial conditions
as a function of the vertical velocity.

The corresponding procedure applied to equation (7) yields
the image-wave eikonal equation for time remigration,� �� d � s�J� ���p��Ra� (9)

where now
����������� � � .

Image-wave equation. Now we want to find a partial
differential equation such that equation (8) is its associated
eikonal equation. In other words, upon substitution of the
ray-theory ansatz � ��������� � �4� ��} �������
����� � d[�$�������
�*� into
our desired differential equation, the leading-order terms
need to provide equation (8). From the leading-order
terms of the second derivatives of this expression, we
recognize that the second-order partial differential equation� ��� � s � �v� � s��� ��� � ��R (10)

is the simplest one to fulfill this condition. Any additional
terms involving arbitrary combinations of � and its first
derivatives with respect to

�
,
�
, or � , do not alter the as-

sociated eikonal equation. Therefore, we refer to equation
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Figure 2: Top: Diffraction traveltime for a point K��
with coordinates N���B � km, PY�kB � km in model ¡��
with ¢£�QBEH�¤ ¥ and ¦�B§¥�¤ ¨ km/s. Bottom: Family of
isochrons for this point K�� , calculated in a model ¡
with ¢EB©H�¤ ª , at the four points F�«¬BfH�¤  km, F:®�BH�¤ ª km, F2¯pB���¤ ¥ km, and F:°;BM�a¤ ± km.

(10) as the image-wave equation for depth remigration in
elliptically anisotropic media under variation of the vertical
velocity.

Correspondingly, equation (9) leads to an image-wave
equation for time remigration,� ��� d � s�
� ��� � ��R w (11)

It is to be observed that a change of variables ² � � W Z s
transforms this equation into� ��� � �² � �´³ ����Ra� (12)

which is the corresponding equation in isotropic media
(Fomel, 1994; Hubral et al., 1996). Thus, time remigration
under variation of the vertical velocity in elliptically aniso-
tropic media can be realized by the same computational
program as in isotropic media.

Variation of medium ellipticity

In elliptically anisotropic media, a remigration can be real-
ized upon the variation of a second parameter, the medium
ellipticity. Therefore, we now suppose that the original mi-
gration has been realized with a model | } with same verti-
cal velocity � as used in the updated model | , but a differ-
ent ellipticity s } . As before, the same diffraction traveltimey of equation (3) corresponds to a

b } ����� } �g� } � in the old
model and a set of points

b �µ�����g�
�
in the new model. The

top part of Figure 2 shows the diffraction traveltime for a set
of parameters

��� } �g� } � s } � � � .
Huygens image wave. Again, to derive the desired image-
wave equation, we need to find the the Huygens wave for
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Figure 3: Top: The family of isochrons of Figure 2
together with the Huygens image wave of equation
(15). Bottom: Different Huygens image waves for
the same point K � , indicating the propagation of the
Huygens image wave. The curves are depicted for¢¬B�H�¤ ª , 2.0, 4.0, and 10.

this kind of image-wave propagation. This Huygens image
wave then describes the position

�J�����
of the image at the

“instant” s that “originated” at the “instant” s } at point
b } .

Equaling the times y of
b

and
b } , we find� ���6�g���l_a� s ��� s ���$dn_
� � � � � d s } ��� } dn_
� � dr� �} ��R w (13)

This equation represents a family of curves
�J����z*_
�

that, for
a fixed

_
, connect all points

b
in model | that possess the

same diffraction traveltime y �`_az����l�
� as
b } in model | } for

the same
_
. The bottom part of Figure 2 depicts four of

these curves as obtained from equation (13) for four differ-
ent values of

_
.

The set of points
b

such that y �`_azl���l�
� is equal toy �`_�z�� } �v� } � for all values of
�

and
�

is given by the en-
velope of this family of curves described by

� ���6�����l_a� s � .
This envelope is the mentioned Huygens image wave that
represents the image in model | of point

b } in model |4} .
Application of the envelope condition � � W � _k��R to equa-
tion (13) yields the stationary value_T� s �nd s } � }s d s } �

(14)

which, when substituted back in equation (13) leads to��� � � �} � sxs } ���¶do� } � �s d s } w (15)

Equation (15) describes the position of the Huygens image
wave that was excited with the initial conditions

��� } �g� } z s } � .
In the top part of Figure 3, this Huygens image wave is
added to the four isochrons of the bottom part of Figure 2.
This nicely demonstrates the characteristic property of the
Huygens image wave (15), i.e., being the envelope of the

set of isochrons described by equation (13). The bottom
part of Figure 3 depicts a set of these Huygens image
waves for different values of the medium ellipticity s .

As for the velocity variation, the substitution
�¶� �
� WYX and� } � �
� } W2X transfers the Huygens image wave to the time-

migrated domain, resulting in� � � � �} � � sxs }� � ���ndt� } � �s d s } w (16)

Eikonal equation. The Huygens image wave of equation
(15) describes the variation of a single point

b } on a reflec-
tor image under variation of the medium ellipticity s , start-
ing at an initial ellipticity s } . As before, we need to eliminate
these initial conditions from equation (15), i.e., we need to
replace the constants

� } , � } , and s } in equation (15) by
derivatives.

As the next step, we introduce the corresponding image-
wave eikonal s ��·$�����g�
� . As before, an explicit expression
for
·$�����g�
�

can be found by solving equation (15) for s . By
replacing s by

·$�����g�
�
in equation (15), taking the deriva-

tives with respect to
�

and
�

of the resulting expression, and
using them to eliminate the constants

� } , � } , and s } from
equation (15), we find the image-wave eikonal equation for·

, · �� d XY· �� · � ��R w (17)

Its solution for initial conditions
��� } �g� } z s } � is equation (15)

solved for s . The image-wave eikonal equation describes
the kinematics of image-wave propagation for depth remi-
gration in elliptically anisotropic media for any arbitrary set
of initial conditions as a function of the medium ellipticity.

The same procedure applied to equation (16) yields the
corresponding image-wave eikonal equation for time remi-
gration, · �� ��¸ · ��J� � ·¹�p��Ra� (18)

where now
·��[·$����� � � .

Image-wave equation. Again, the last step is to find a par-
tial differential equation such that equation (17) is its asso-
ciated eikonal equation. In other words, upon substitution
of the ray-theory ansatz � �����l��� s �£� ��} ������������� s d&·$�������
�*�
into our desired differential equation, the leading-order
terms need to provide equation (17). From the leading-
order terms of the second derivatives of this expression, we
recognize that the second-order partial differential equation� ��� � X s �� � �"º ��R (19)

is the simplest one to fulfill this condition. Therefore, we
refer to equation (19) as the image-wave equation for depth
remigration in elliptically anisotropic media under variation
of the ellipticity.

It is important to observe that the image-wave equation (19)
can be transformed into a partial differential equation with
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constant coefficients. Upon the introduction of the new vari-
ables » �§�¼W s , and ½ �¾� � W:� , the image-wave equation
(19) takes the form � ��� d �J¿:À ��R w (20)

This transformation is meaningful from an implementa-
tional point of view, since for differential equations with con-
stant coefficients, it is generally much easier to find stable
FD implementations.

As a final word on the image-wave equation (19) or its
constant-coefficient version, let us mention that both equa-
tions do not depend on the vertical velocity � but only on
the medium ellipticity s . Thus, it can be expected that
depth image-wave remigration in elliptically anisotropic me-
dia should be relatively insensitive to the actual value of the
vertical velocity. This, in turn, points towards a potentially
broad applicability of the image-wave concept for elliptically
anisotropic remigration even in inhomogeneous media.

Correspondingly, equation (18) leads to an image-wave
equation for time remigration,� ��� d ¸ s ��J� � � º ����R w (21)

It is to be observed that the same change of variables as
before, ² � � W Z s , now with varying s , also transforms this
equation into the corresponding equation (12) for isotropic
media. In other words, also time remigration under varia-
tion of the medium ellipticity can be realized by the same
computational program as in isotropic media.

In fact, a careful analysis of time remigration under a simul-
taneous variation of both, vertical velocity � and medium
ellipticity s shows that even in this situation, the final image-
wave equation can be transformed into equation (12) that
depends on the above combined parameter ² only. By sub-
stitution of the definition of the medium ellipticity s into the
above expression for the transformed variable ² , we ob-
serve that ² � � W�Á � � W \ � � \ is nothing else than the
horizontal velocity. In other words, time remigration in ellip-
tically anisotropic media is independent of the vertical ve-
locity and depends only on the variation of the horizontal
velocity.

Conclusions

In this work, we have derived a set of second-order par-
tial differential equations that work as image-wave equa-
tions for remigration in elliptically anisotropic media. They
describe the propagation of a reflector image in time and
depth remigration as a function of the vertical velocity and
the medium ellipticity. To this end, we have studied the
kinematics of the image wave in such media to derive the
corresponding eikonal equations.

The description of the position of the reflector image as a
function of the medium ellipticity can be very useful for the
detection of this parameter. A set of migrated images for

different medium ellipticities can be obtained from a single
migrated image without the need for multiple anisotropic
migrations. From additional information on the correct re-
flector position or a focusing analysis, the best fitting value
of the medium ellipticity can then be determined.

The probably most interesting application of this procedure
would start with an initial condition of an isotropic medium,
described by unit ellipticity, i.e., s } �Â�

. Since isotropic
migration is a very well understood field, the image-wave
equation could then be used to transform an isotropically
migrated image, which can be obtained with one of the
highly sophisticated migration methods that are nowadays
available, into an image that corresponds to an elliptically
anisotropic medium.

In the case of time remigration, the image-wave equation
shows that the position of the reflector image in elliptically
anisotropic media depends on the horizontal velocity only.
This implies that a migration velocity analysis based on
time migration can only detect this parameter. In particular,
this means that there is no way to distinguish an elliptically
anisotropic medium from an isotropic one on the basis of
time migration only.
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