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Abstract  
 
Since the inverse problem is ill-posed it is necessary 
to use some tool to reduce this deficiency. The tool 
that we choose is the regularization by derivative 
matrices. The L-curve was reintroduced in the 
literature of inverse problems by Hansen, and, in this 
work we use the L-curve for the selection of 
regularization factor in cross hole and VSP 
geophysical diffraction tomography. Simulations with 
synthetic data are presented, and the results validate 
the feasibility of the method. 
 
 
Introduction 
 
The main purpose of exploration geophysics for 
hydrocarbons is to provide trustworthy images of the 
subsurface, which could indicate potential hydrocarbons 
reservoirs. Exploration seismology, better known as 
seismics is the area of applied geophysics most 
employed for the subsurface imaging. And within 
seismics, tomography was incorporated as a method of 
data inversion. In this work we use geophysical diffraction 
tomography where the input data is the scattered acoustic 
field measured at the receivers, and the velocity of the 2-
D medium is the inversion output.  Since geophysical 
diffraction tomography is an ill-posed inverse problem, it 
is necessary to use some tool to reduce this deficiency. 
The tool that we choose is the regularization of the 
inverse problem by derivative matrices, known in the 
literature by several names, specially as Tiknonov 
regularization. Regularization has an input parameter with 
crucial role known as regularization parameter or factor, 
which choice is already a problem. The L-curve was 
reintroduced in the literature of inverse problems by 
Hansen (1992a, 1992b, 1998), and, in this work we use 
the L-curve for the selection of regularization factor in 
cross hole and vertical seismic profile geophysical 
diffraction tomography.  
 
Methodology 
  
Inverse problems have some limitations in such a way 
that they are said to be ill-posed. Ill-posedness has 
several causes, and it is present in all geophysical 
applications. Acoustical tomography, either travel time or 
diffraction tomography, is not an exception. In this work 

we study two acquisition geometries in diffraction 
tomography using the matrix formulation: well to well 
(cross hole) and well to suface (vertical seismic profiling). 
The data used is the vector of scattered acoustic field 
measured at the receivers, and the velocity of the two 
dimensional medium is the inversion output. One 
common way to solve this inverse problem is by the 
generalized inversion through singular value 
decomposition, where the crucial issue that arises here is 
the presence of small singular values which generally 
contribute to inconsistent solutions. This can be avoided, 
at least partially by using regularization. Instead of using 
the projection theorem  (Devaney, 1984; Wu and Toksöz, 
1987), we use the matrix formulation (Rocha Filho et al., 
1996; Rocha Filho, 1997; Rocha Filho et al., 1997).. The 
main advantages of the matrix formulation are: (1) the 
option of having irregular spacing (i) between  sources, (ii) 
between receivers and (iii) between sources and between 
receivers (all very common in practical situations with real 
data); and (2) the possibility to study in a better way the 
ill-posedness of the inverse  problem. The main 
disadvantage is the cost in terms of computation time. For 
the forward modeling we compute the scattered acoustic 
field from a given 2-D velocity distribution c . This is 
done by using the Born approximation or through a 
second order finite difference scheme. The scattered field 
is the input for the inverse procedure, implemented here 
by singular value decomposition plus regularization. The 
inversion output is the estimated two-dimensional velocity 
distribution . In each inversion we use a different 
regularization parameter, and we may calculate the RMS 
error between these two velocities, but our choice of the 
best regularization parameter is done through the L-
curve. 
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Generalized Inversion 
 
The concept of generalized inverse was developed by 
Moore and independently by Penrose (1955). Consider a 

matrix A. If: (i) ; (ii) ; (iii) 

; (iv) ( ; then the  

matrix  is unique and is called pseudo-inverse or 
generalized inverse. The generalized inverse is calculated 
using the so-called singular value decomposition 
(Lanczos, 1961). A rectangular  matrix A with rank 

k can be decomposed as where U is the 
 matrix which contains the orthonormalized  

eigenvectors of , V is the  matrix which 

contains the orthonormalized eigenvectors of  
and  is the  diagonal matrix which contains the 
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singular values of A, written in the decreasing order, that 
is, .The generalized inverse  is a 

 matrix given by  where is the 
 diagonal matrix which contains the reciprocals of 

the non-zero singular values of A, so that 
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and E is the diagonal square matrix of order k expressed 
by   
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Using  SVD the solution will  be .   d VΣ=
 
 
Regularization and the L-Curve 
 
Introducing the concept of regularization (Tikhonov and 
Arsenin, 1977) in order to improve the quality of the 
inversion, the solution will be given by 

where is the regularization 
factor.  If the matrix D is equal to the identity the solution 
reduces to the so called Levenberg-Marquardt 
expression, or zero order regularization. If D is the first 
derivative matrix then the regularization is called to be 
first order and so on. The L-curve knee represents a 
trade-off between smoother solutions with higher errors 
and rougher solutions with smaller errors.  Thus, the knee 
detection (maximum curvature point) at the L-curve is an 
heuristic criterium to select the most appropriate solution.  
Solutions near to the curve knee are also acceptable and 
possibly more physically meaningful. We applied the L-
curve implementing an automatic method to initially select 
the best regularization factor, but solutions with 
regularization factor near to the selected one were also 
considered.  Thus, one can achieve a solution that 
simultaneously satisfy the criteria of error minimization, 
smoothness and also with physical meaning. Since the 
problem is ill-posed we use the regularization procedure 
as did in Gonçalves and Bassrei (1999), but here we 
employ the L-curve for the selection of the regularization 
parameter as suggested in Hansen (1992, 1998). 

dT

 
 
 
Diffraction Tomography and Forward Modeling  
 
The wave equation is given by  

,
)

)
t

=  

where  is the solution (displacement or pressure) 
and is the velocity of the medium. Considering that 

the solution can be written as U , 
which represents a harmonic dependence with time, we 
obtain the Helmholtz equation: 

where the 2-D wavenumber is given 

by 
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 The conditions for the 

imaging are that the medium is acoustic and 2-D, and the 
propagation of the incident field is within an limited area 

 the background, with constant velocity c .  The 
object function is defined as 
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and represents the perturbation of the velocity in each 
point in relation to . Redefining the wavenumber as 

function of , we have that  and 
substituting it in the Helmholtz equation, we obtain  
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where  is the incident field and  is the scattered 
field. The last differential equation has the following 
integral solution, known as Lippmann-Schwinger 
equation(Lo and Inderwiesen, 1994): 
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In the inverse scattering procedure, we consider the 
knowledge of the scattered field, so that the object 
function is the unknown function, and the integral solution 
becomes an integral equation. The above equation is 
nonlinear and the linearization is achieved, for example, 
via the first order Born approximation, which is only valid 
for the weak scattering of the incident field. The total field 
is  so that we have  
Thus we obtain a linear relation between O  and 

:  
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We represent the incident field by a source in r  through 

the Green's function:  and the scattered 

field in  is registered by a receptor in  
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The discretization of the above relation leads to the linear 
relation d = Am, which has to be inverted in order to 
recover O(r). In this work the inversion is done using 
SVD. 
 
The scattered field computed from the synthetic model 
was performed using finite differences, assuming a 
Ricker's wavelet source signature.  However, the 
calculated field at the source position has differences of 
amplitude and phase in relation to the original Ricker's 
wavelet.  The calculated field amplitude is 2π times 
greater than the adopted wavelet's amplitude and there is 
a constant phase shift depending on the selected 
frequency. Calibration was performed to correct these 
differences by the average complex ratio between Born 
approximation and finite difference modeling.  Another 
possible calibration consists of filter calculation that 
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transforms the measured field into the corresponding 
Ricker's wavelet and then this filter is applied to the 
synthetic seismograms. 
 
Numerical Simulation 
 
We considered a true model with 15 x 15 = 225 blocks, 
which can be seen in Figure 1 for the cross well geometry 
and in Figure 9 for the VSP geometry. The same true 
models can be seen in Figure 2 and Figure 10 with a 
different display. The background medium has 4,000 m/s. 
There is a low velocity layer with 3,900 m/s. This makes a 
minus 2.5 % contrast. The central inhomogeneity has 
4,100 m/s which is equivalent to a plus 2.5 % anomaly. In 
each configuration there are 16 sources and 16 receivers, 
in such a way that the data set has 256 complex 
numbers. Figures 1, 2, 9 and 10 also show the source 
and receiver location. But since we separate the complex 
numbers in real and imaginary parts, we have in fact 512 
informations, making the tomographic matrix rectangular 
(512 x 225).  The frequency of the monochromatic wave 
is 210 Hz. All the following simulations are with noisy 
data. Basically we add Gaussian noise in such a level that 
the RMS between the original scattered field and the 
corrupted one is around 1%. For each example we 
produced three L-curves: for the regularizations of zero, 
first and second order. The Hansen’s package provides 
the “corner” of the L-curve. In the caption of each 
tomogram we provide information of this “optimal” 
regularization parameter and the RMS error between the 
true velocity and the estimated one, and also the RMS 
error between the true object function and the estimated 
one. Figure 3 shows the L-curve for zero order and Figure 
4 shows the reconstruction. For the first order the L-curve 
can be seen in Figure 5 and the reconstruction in Figure 
6. For the second order the L-curve is displayed in Figure 
7 and estimated model in Figure 8. For the VSP 
geometry, Figure 11 shows the L-curve for zero order and 
Figure 12 shows the reconstruction. For the first order the 
L-curve can be seen in Figure 13 and the reconstruction 
in Figure 14. For the second order the L-curve is 
displayed in Figure 15 and estimated model in Figure 16. 
For comparison, the reconstructions with least squares, 
that is without regularization can be seen in Figures 17 
and 18. 
 
 
Conclusions 
 
From two sets of overdetermined synthetic examples with 
ill-conditioned kernel matrix we have shown that the 
algorithm in question is feasible for a regularization 
algorithm for geophysical diffraction tomography. It 
performed well when compared with other inversion 
techniques such as non-regularized SVD. In relation to 
the regularization factor selection, we used the L-curve in 
order to make a decision about the optimal parameter.  
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Figure 1. True model  
(Cross well acquisition geometry - XWP) 

 

 Figure 2. True model 15×15 mesh (XWP) 
 

 

 

 

Figure 3. L-curve for zero order regularization (XWP)  Figure 4. Tikhonov inversion (zero order regularization) 
λ=0.30108; RMSc=0.50287%; RMSo=24.6535% 

 

 

 

 

Figure 5. L-curve for first order regularization (XWP) 
 

 Figure 6. Tikhonov inversion (first order regularization) 
λ=0.5761; RMSc=0.48179%; RMSo=22.3163% 
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Figure 7. L-curve for second order regularization 
(XWP) 

 

 Figure 8. Tikhonov inversion (second order 
regularization)  

λ=1.4599; RMSc=0.48227%; RMSo=25.9723% 
 

 

Figure 9. True model 
(Vertical Seismic Profile – VSP) 

 

 Figure 10. True model 15×15 mesh (VSP) 
 

 

Figure 11. L-curve for zero order regularization (VSP) 
 

 Figure 12. Tikhonov inversion (zero order 
regularization)  

λ=0.32699; RMSc=0.59085%; RMSo=40.0224% 
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Figure 13. L-curve for first order regularization (VSP) 

 
 Figure 14. Tikhonov inversion (first order 

regularization)  
λ=0.50108; RMSc=0.53196%; RMSo=81.7048% 

 

 

 

Figure 15. L-curve for second order regularization (VSP) 
 

 Figure 16. Tikhonov inversion (second order 
regularization)  

λ=1.0305; RMSc=0.5253%; RMSo=85.7834% 
 

 

 

Figure 17. Least squares solution for XWP acquisition 
RMSc=0.52655%; RMSo=65.5594% 

Figure 18. Least squares solution for VSP acquisition 
RMSc=0.61016%; RMSo=92.1246% 

 


