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Abstract 
 
A migration algorithm and computer codes based on the 
Gaussian beam method are developed for zero-offset and 
single short pre-stack configurations of the input data. Our 
approach preserves the main features of the classical 
Kirchhoff type migration (Schneider, 1978): for backward 
propagation of the recorded wave field the Green formula 
is used (in the time domain it is called the Kirchhoff 
formula); the image condition is based on the fact that the 
direct and backward fields are coherent in time on a 
reflector. Main point of our approach consists in replacing 
the corresponding Green function by its high-frequency 
asymptotics in terms of Gaussian beams (Popov, 1982). 
 
Due to advantages of the Gaussian beam method, our 
approach does not face the caustic and two point 
problems in ray tracing, it automatically includes late 
arrivals and maximum amplitude of the wave field in the 
imaging process. As the requirement for the wave field to 
be coherent on a reflector is necessary but not sufficient 
condition, the stacking procedure is essential because it 
enables to remove random coherency in the migration 
domain. 
 
Introduction 
 
It is now well-known that the Gaussian beam method 
(Popov, 1982, Babich and Popov, 1989) provides 
technological and efficient algorithm for the computations 
of wave fields both in the frequency and time domain 
compared to the ray method. Besides, in the latter case 
summation of space-time Gaussian beams, or quasi-jets, 
is preferable, (Kachalov and Popov, 1988, Popov, 1987). 
So the idea to adjust the Gaussian beam method to 
migration and imaging problems seems to be natural. 
 
A migration algorithm and computer codes which involve 
Gaussian beams were developed earlier (Hill,1990). One 
of the main point of his approach consists in 
decomposition of the input data into plane waves and 
further decomposition of each plane wave into set of 
Gaussian beams in order to propagate the recorded field 
backward. However, we cannot consider that procedure 
to be adequate and efficient for complicated velocity 
models and geometrical shape of reflectors. We prefer to 
use classical scheme of Kirchhoff type migration where 

the corresponding Green function is replaced by its 
Gaussian beam asymptotics. 
 
The migration problem which we solve by our algorithm 
can briefly be described as follows. Assume we fix a 
reflection event in the recorded data. Then, for given 
velocity model, we propagate it backward in time and fix it 
in such a position in the migration domain where it 
coincides, or satisfies boundary conditions, with the direct 
wave field generated by the source. Maximum of 
coherency between the fields indicates then position of 
the reflector for the pre-stack input data. In the case of 
zero-offset, the backward propagated reflection event  
indicates position of the reflector itself at certain moment 
of time. 

There is a popular and attractive approach to migration 
problems based on the Born approximation and 
subsequent inversion of the corresponding elliptic Fourier 
integral operator. In this case the output data describe the 
variation of the velocity in the migration domain directly. 
However, this method contains, in general, mathematical 
contradiction. Indeed, the Born approximation sets up an 
upper limit on the circular frequency. In comes out from 
the fact that in the case of compact support of the velocity 
variation the initial integral equation belongs to the 
Fredholm’s type of integral equations. The iteration 
procedure for this equation converges within a frequency 
domain restricted by the first root of the Fredholm’s 
determinant, i.e. the first eigenvalue of the homogeneous 
integral equation. At the same time, the inversion of the 
Fourier integral operator requires the circular frequency to 
tend to infinity. Note that the classical Kirchhoff type 
migration does not contain a mathematical contradiction. 
 
Mathematical foundation. 
 
We assume that the wave field U( xρ,t), xρ=(x,y,z), to be 
migrated and modeled, satisfies the acoustic wave 
equation 
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where ∆  is the Laplace operator and C=C( xρ) is the 
velocity. The seismic surface is a part of the plane z=0. 
Seismograms recorded on the seismic surface are 

denoted by and they are 
the input data for zero-offset migration. In case of non-
zero offset, a point source which generates the wave field 
is located on the seismic surface too. 
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To derive the basic formulae for migration, let 
Ω  be a compact domain in 3D bounded by a smooth 
and closed surface Ω∂  and consider the following 
problem in Ω  
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Introduce also the Green function ),;,( 00 txtxG ρρ
 which 

is solution of the following initial problem in domain Ω  
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So far we do not impose any boundary conditions on Ω∂  
for the Green function. By employing the Green function 
G, we are able to express wave field U( ),0 otxρ  at any 

point Ω∈0xρ  at any moment t = t0 via the boundary 
values of the field U and its normal derivative      
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where 
xn∂

∂
means the derivative along outgoing normal 

to  on Ω∂ ),,( zyxx =
ρ

 coordinates and the 

integration  is performed over the surfacexdS Ω∂ ; 

coordinates ),,( 0000 zyxx =
ρ

 and are fixed.  0t
For the purpose of migration we consider t0<T, i.e. we 
perform backward propagation in time of the wave field 
recorded on the boundary. Under  we understand 
only a part of surface z = 0, the seismic surface. In order 

to exclude the term with normal derivative 
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of the input data, we assume that the Green function 
satisfies the Dirichlet boundary condition on the seismic 
surface and fulfill it within the Kirchhoff approximation. 
Thus, the final and already approximate formula for the 
backward propagated wave field takes the form  
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Consider now the exploding reflector model. According to 
the corresponding imaging condition, positions of all 
possible reflectors in the migration domain are fixed at the 
moment  if velocity C  of wave propagation is 

replaced by 

00 =t

21  C in the Green function. Thus the final 
formula for migration in this case reads 
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Consider further non-zero offset. In this case we have to 
introduce direct wave field generated by a point source 
located on the seismic surface. To propagate direct wave 

field ),()( txU D ρ
we have to solve the following 

problem
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where Mxρ  indicates position of the source and  is 
the time pulse at the source. 
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If we introduce Green function );,( ωMxxG ρρ
 for the 

wave equation in frequency domain which corresponds to 
the non-stationary problem (7), then the direct wave field 
can be presented as follows 

∫
∞

=
0

)( Re1)|,( ω
π

dxtxU M
D ρρ

);,()( ωωω
M

ti xxGFe ρρ−                                     (8) 

where )(ωF  is the spectrum of  time pulse .  )(tf
To identify position of a reflector in the migration domain, 
we introduce an imaging condition based on the fact that 
the incident and reflected fields satisfy a boundary 
condition on the reflector identically with respect to time. 
In physical terms, it means that the incident and backward 
propagated fields are coherent at each point of the 
reflector. 

Essential feature of our approach consists in 
replacing the Green function in previous formulae by its 
Gaussi n beam asymptotics. Denote by a  

);,( ωMGB xxG ρρ
 the asymptotics of the Green function in 

frequency domain in terms of Gaussian beams, then for 
the Green function in time domain we obtain the following 
approximate formula 
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To obtain expression for );,( 0 ωxxGGB
ρρ

, we have to 

integrate Gaussian beams  on the spherical angles GBU
ϑ  and ϕ  (ray parameters) with the appropriate initial 

amplitude );,( ωϕϑΦ  

Ninth International Congress of the Brazilian Geophysical Society 



Migration with Gaussian beams 
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

3

∫ ∫= ϕϑω ddxxGGB );,( 0
ρρ

 

),,();,( 0 ωωϕϑ xxUGB
ρρ

Φ                              (10). 

Formul  ( 0) provides the high-frequency appro imation a 1 x
);,( 0 ωxxGGB

ρρ
 of the Green function );,( ωMxxG ρρ

,  
for details see Popov (1982). 

 
Numerical examples 
 
Numerical experiments with 2D migration codes were 
carried out on PC and therefore we had to diminish the 
migration domain. 
Zero-offset input data were simulated by an “exploding 

sine” described by the expression  )sin( xAHz γ−=  

with H, A and γ  being the parameters. This reflector was 
immersed in homogeneous and inhomogeneous 
(constant gradient) velocity models. Fig.1 shows relatively 
complicated structure of the ray field and the image of a 
concave period of the “exploding sine”. 
 
Pre-stack depth migration code was tested on standard 
2D Marmousi model with constant density 1=ρ . In this 
case we choose two migration subdomains. The first one 
contains two shallow wedges located at 4000m 
<x<5500m, 300m<z<900m. For imaging, we used 400 
Gaussian beams uniformly emanated from the source 
with interval 0,9 degrees in between the central rays. In 
this case a lot of rays do not reach the seismic line and 
therefore the number of Gaussian beams could be 
reduced. The image was obtained by stacking of 28 shots 
located from x=4200m to x=5550m with interval 50m in 
between. We would like to remind that the diffraction 
problem for a penetrable wedge remains unsolved in the 
theory and neither ray, nor Gaussian beam methods 
describe the wave field in this domain perfectly. However, 
the image of the wedges is not bad. Fig.2 exhibits a 
typical ray field emanated from a shot and the image of 
the domain. 

The second subdomain includes the hydrocarbon deep 
lens located at 5800m<x< 7175m and 2300m<z<2713m. 
For imaging, we used 360 Gaussian beams emanated in 
the upper semicircle with interval 0,5 degrees in between. 
The image was obtained by stacking of 39 shots located 
on the seismic line from 6300m to 8200m with interval 
50m. Fig.3 demonstrates typical ray field generated by a 
shot and the image of the subdomain. 
 
Conclusions 
 
Numerical examples prove that the proposed method 
operates for complex ray fields which include caustics, 
multicoveraged data, late arrivals etc., without additional 
efforts. It overcomes the two point problem in the ray 
tracing though requires to have relatively dense fan of 
central rays in the target domain.  The approach remains 
mathematically transparent and technologically invariant 
with respect to complexity of ray fields unlike the ray 
based migration, compare e.g. with Operto et all, (2000). 

Application of the ray or Gaussian beam methods 
requires the velocity to be slowly varying on the dominant 
wave length in order to meet applicability conditions of the 
methods. It can be easily fulfilled for artificial models but 
not for those which are broadly in use in Geophysics. For 
instance, Marmousi model contains a number of thin 
layers with big gradients of the velocity. And though the 
images look reasonably nice, it remains doubtful whether 
wave field amplitudes are sufficiently accurate. We are 
sure that all that holds true for finite difference methods 
as well unless special and non-trivial efforts are 
undertaken. 
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Figure 1 – “Exploding Sine”, structure of rays and image of concave period of the sine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Pre-stack migration. Typical structure of rays and image of two shallow wedges for Marmousi model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Pre-stack migration. Typical ray field and image of hydrocarbon deep lens for Marmousi model. 
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