
Aperture in Kirchhoff common-angle time migration                       

9th International Congress of The Brazilian Geophysical Society 

Optimal aperture in Kirchhoff common-angle time migration   
Cláudio Guerra* and Tânia M.G. Santiago, PETROBRAS, Martin Tygel, UNICAMP 

 

Copyright 2005, SBGf - Sociedade Brasileira de Geofísica 

This paper was prepared for presentation at the 9th International Congress of the 
Brazilian Geophysical Society held in Salvador , Brazil, 11-14 September 2005. 

Contents of this paper were reviewed by the Technical Committee of the 9 th 
International Congress of the Brazilian Geophysical Society. Ideas and concepts of the 
text are authors’ responsibility and do not necessarily represent any position of the 
SBGf, its officers or members. Electronic reproduction or storage of any part of this 
paper for commercial purposes without the written consent of the Brazilian 
Geophysical Society is prohibited. 

 

Summary 

Recently, much attention has been given in obtaining 
angle gathers and also amplitude versus angle (AVA) 
curves during the migration process. An attractive way to 
do this is provided by (time or depth) common-angle 
Kirchhoff migration (CAKM), which considers travel-time 
curves and weights that refer to the common-angle 
(instead of the conventional common-offset or common-
shot)  configuration. As occurs with any Kirchhoff-type 
procedure, the CAKM output strongly depends on the 
choice of the migration aperture, not only for reduction of 
computational costs, but also for the accuracy of results. 
In this work we shortly review the CAKM theory and 
address the problem of optimal selection of migration 
aperture. In this context, the concept of projected Fresnel 
Zone, which plays a prominent role in the estimation of an 
optimal migration aperture, is also reviewed and applied.       

Introduction 

As compared to the conventional common-offset Kirchhoff 
migration, CAKM is experiencing growing interest in 
seismic processing, imaging and inversion due to the 
following reasons: (a) the ability to more easily deal with 
multiple paths and (b) better access to amplitude versus 
angle (AVA), instead of amplitude versus offset (AVO) 
curves. The latter require a further inversion to convert to 
AVA curves, better suited to reservoir characterization 
purposes.    

In the 2D or 2.5D cases, the CAKM operator is 
characterized by a 3D curve in the midpoint-offset-time 
domain. This is a drawback, since one has to load all data 
in memory to be accessed by that curve. In the 3D case, 
its usage can be prohibitive.  In this way, the derivation of 
efficient implementation of CAKM is still an open problem. 

Santiago (2004) provides a description and also 
discusses a number of practical aspects of true-amplitude 
CAKM in time domain. True amplitude means that, for a 
primary reflection, the migration output automatically 
compensates for geometrical-spreading loss. In this way, 
the obtained amplitudes can be considered as a measure 
of the corresponding reflection coefficients. In particular, it 
is explained how to estimate an optimal migration 
aperture with the help of the concept of the projected 
Fresnel Zone (PFZ). In this paper, we review the PFZ 
definition and its application to derive an optimal migration 
aperture. 

2.5D Kirchhoff common-angle time migration 

The 2.5D Kirchhoff common-angle time migration can be 
represented by the following integral along a certain 
travel-time curve, τ

D
,  

( ) ( ) ( )( )[ ]∫ ==
A

D MtUDMWdMV ,,,., αταααγ ,    (1) 

where, V(γ,M) is the migrated common reflection angle, γ, 
output, W(α,M) is a weighting function and α is the 
migration dip. In the case of PP data, the migration dip  α 
is simply the angle that the normal to the line that bisects 
the angle defined by the rays that connect source to the 
migrated point and migrated point to the receiver. 
Moreover, D represents the half-derivative operator, 
U(α,t) is the seismic data, represented by its analytical 
signal , to be migrated and A is the migration aperture that 
defines the extension of the migration operator. If the 
amplitudes to locate in V(γ,M) are supposed to represent 
the reflection coefficients, the weighting function, W(α,M), 
has to take into account the geometrical spreading 
compensation along the incoming and outcoming rays 
from the image point. 

In this migration scheme, the travel-time curve is located 
in the 3D space (x, h, t), where x is the mid-point 
coordinate, h is the half-offset between source and 
receiver and t is time in the input domain. Under the 
assumption of a homogeneous medium (which is the 
usual case for time migration), the travel-time expression 
is described by 3 parameters, namely the cosine of the 
migration dip, the sine of the reflection angle and the time 
in the output domain, tm. For a given a point, M(xm,tm), in 
the migrated domain, a smooth RMS velocity field, v(M), 
and a fixed reflection angle, γ,  one can calculate the 
travel-time based on sine and cosine rules . The variation 
of the migration dip, α, implies varying offsets, as well as 
CMP coordinates. The CAKM travel-time, half-offset and 
midpoint coordinates  can be determined by the following 
equations (Fomel and Prucha, 1999).  
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According to Santiago (2004), the true-amplitude 
weighting function, W(α,M), is given by  
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Up to now we provided equations for the staking line and 
true-amplitude weighting function. In the next section we 
show how to determine the migration aperture, so as to 
get more efficient and accurate  amplitudes. 

Migration aperture 

While submitting a migration job, geophysicists have a 
few parameters to set up. Routinely, they perform tests to 
analyze S/N migration ratio and spatial resolution before 
running final migration. One of the tested parameters is 
the migration aperture that dictates the extent of the 
migration operator and has impact on both S/N ratio and 
spatial resolution. 

In Kirchhoff migration algorithms, parameters defining 
migration aperture have great impact on the quality of the 
final image and on the execution time. If the aperture size 
is too small, a low-cost, low-frequency, low-dip and 
mixed-aspect unmigrated image is obtained. On the other 
hand, if the aperture is taken too large, the migrated 
image will be high-cost, high-dip, with a high-resolution 
appearance, but sometimes with a low signal to noise 
(S/N) ratio. Therefore, the search for an optimal aperture 
is a crucial procedure in all Kirchhoff migration processes. 
In routine processing, aperture tests are systematically 
carried out to evaluate the continuity and positioning of 
dipping reflections (salt flanks, faults), S/N-ratio, spatial 
resolution and execution time. 

Migration apertures are routinely centered on the 
migrated point. In the simple case of a purely kinematical 
migration – reflectors well positioned, but with wrong 
amplitudes – the least possible migration aperture radius 
is that of the (horizontal) distance between the migrated 
point and its corresponding stationary point. For the 
situation of a planar dipping reflector depicted in Figure 1, 
that distance is represented by the segment rab. Using 
basic principles of geometry, one can see that the 
expression of rab is nothing more than the right-hand side 
of Equation (2c), for which the fixed reflector dip coincides 
with the migration dip, α=θ. 

To obtain more precise migration results , apertures  
should be centered, not at the migration point, but on the 
stationary point, since the largest contribution to the 
migrated amplitude comes from a region in the vicinity of 
that point.  A key concept for the determination of optimal 
migration apertures is the one of the n-th Fresnel Zone, 

denoted by )(nFZ  and defined as  the collection of points 

on the reflector for which (see Cervený and Soares, 1992) 
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In the above equation, τ
D
 is diffraction time, τ

R
 is the 

reflection time (at the stationary point) and Τ
w
 is the 

dominant period of the seismic wavelet. Physically, the 

first Fresnel Zone, )(nFZ ,  for a certain source-receiver 

pair, describes the region at the reflector which most 
influence the reflection response for that pair. As a 
consequence, that region should be the one chosen for 

optimal aperture in migration. The n-th Fresnel Zone (for 
n = 2, 3,…) represent enlargements of the first Fresnel 
Zone that, in principle, should be used for tapering 
purposes. For actual computation purposes, Fresnel 

Zones, in particular the first Fresnel Zone, )1(FZ , are not 

of practical value since they are located on the reflector in 
the depth domain. To obtain corresponding migration 
apertures in the trace domain, Schleicher et al. (1997) 
introduce the concept of a projected Fresnel Zone, 

)(nPFZ , which is nothing more than the projection of the 

original n-th Fresnel Zone onto the trace domain 
according to the measurement configuration. Figure 1 
shows the first and second Fresnel and projected Fresnel 
Zones for the common-angle configuration.     

Based on the work of Hertweck et al. (2003) for zero-
offset (poststack) time migration, Santiago (2004) 
prescribes to increase the migration aperture radius by a 

quantity of, at least, )1(PFZ  – the projected first Fresnel 

Zone radius, in order to get reliable amplitudes to perform 
AVA analysis after migration. The initial experiments in 
Santiago (2004) indicate that the procedure guarantees 
the summation of all the constructive energy related to the 
reflection coming from migrated point.  

The construction of the n-th Fresnel Zone in the common-
angle configuration for a point M(x,z) on a dipping plane 
reflector of angle θ with a homogeneous overburden can 
be obtained as follows: Referring to Figure 2, we consider 
M(x,z) as a reflection point of traveltime τR and specular 
rays lS and lG. We now consider the diffraction point Mn 
also at the reflector and with diffraction rays, d1 and d2, 
such that the diffraction traveltime τD satisfies  
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The distance MMFZ nn −=)(
represents the radius of 

the n-th Fres nel Zone. According to Equation (4) and 
considering the Taylor series up to the second order for 
the diffraction traveltime τD, one obtains  for the n-th 
Fresnel Zone radius  (see Santiago (2004)) 
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Once defined the size of the Fresnel Zone, it is now 
necessary to project it onto the measurement surface to 
determine the traces that constitute the n-th projected 
Fresnel Zone. These traces are the ones that will 
contribute to the output migrated amplitude. Note that the 
projection depends on the desired configuration, in this 
case, given by the common-angle geometry. For a given 
fixed reflection angle, γ, the points M and Mn at the 
reflector define, on the measurement surface, the 
corresponding trace points x and xn, namely the spatial 
CMP coordinates of the center and one-sided edge of the 
projected Fresnel Zone. This leads to following 
expression of the n-th projected Fresnel Zone 
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Equation (7) shows that, for an expected geological 
planar dipping reflector within a homogeneous model of 
velocity, v, and an  estimate of the dominant source-
wavelet period, one can compute  the n-th projected 
Fresnel Zone for the common-angle configuration.  

We point out that the true Fresnel Zone for a dipping 
plane reflector is not symmetrical with respect to the 
reflection point, being larger in the downdip direction.     
The (symmetrical) Fresnel and projected Fresnel Zones 
radii expressed by Equations (6) and (7), respectively, are 
a consequence of the second-order Taylor polynomial 
employed to approximate the diffraction traveltime τD.  

The next step is to determine the reflector dip at the 
reflection point in depth (see point M(y,z) in Figure 1), 
since, according to Equation (7), the knowledge of that 
quantity is sufficient to determine the n-th projected 
Fresnel Zone, so that a true-amplitude common-angle 
Kirchhoff migration in the least aperture migration 
approach can be performed. 

Following our assumption of constant velocity above the 
reflector, the reflection point M(y,z) in depth lies vertically 
below to the given time-migrated point N(xm,tm), namely, 
y=xm and z=vtm/2, where v is the velocity.  Moreover, the 
reflector dip at M coincides with the emergence angle the 
zero-offset ray (the normal to the reflector from M) makes 
with the vertical.   

Estimation of the reflector dip 

Kirchhoff processes can be used to extract information 
from stationary rays from seismic data by the so-called 
multiple-weighted diffraction stack (Bleistein, 1987; Tygel 
et al., 1993). This is done by performing migration twice 
with slightly different weighting functions and dividing both 
results. This quotient represents an estimation of the 
parameter to be extracted. Following Bleistein (1987), we 
apply the procedure to zero-offset Kirchhoff migration and 
design the weights so as to obtain the emergence angle 
of zero-offset primary rays.   

To describe the multiple-weighted diffraction stack 
procedure, we briefly recall the amplitude behavior of the 
migration integral.  For that, we consider the 2.5D zero-
offset time migration integral in the frequency domain  

 ( ) ( ) ( ) ( )∫ −=
A

i RDeUMWdiMV ττωωξξξωω ,ˆ,.,ˆ .    (8) 

In this case, ξ represents the location of the coincident 
source-receiver pair (compare with Equation (1) for the 
analogous common-angle situation).  

Due to the oscillating behavior of the complex exponential 
in Equation (8), and assuming the high-frequency 
situation that is typically valid for seismic Kirchhoff 
migration, the integrand goes to zero except in the region 
where τ

D
 approaches to τ

R
. This limit is governed by 

Equation (4). Recall that, in the present case, τ
D
 and τ

R 
represent the diffraction and reflection curves for the zero-
offset configuration. Samples which effectively contribute 
to the migrated image are the ones related to straight rays 
that fulfill Equation (4). During zero-offset migration, each 
sample along the migration operator has  its own migration 
dip angle. Therefore, modifying the original weighting 
function (in this case it could be a constant, say 1) by 
attaching the factor (migration dip angle), one obtains a 
new weighting function. Its use in the migration operator 
produces an image whose am plitudes (V1(M)) can be 
considered as the original amplitudes V(M) multiplied by a 
weighting mean of the weighted samples that come from 
the region around the stationary point. Finally, dividing 
amplitudes V1(M) by V(M) one obtains a section 
containing, for each sample, an estimative of the reflector 
dip angle, θ. Note that some kind of smoothing have to be 
applied on this estimative of reflection angle, θ section, 
because of values near zero amplitude in the input 
sections, V(M) and V1(M). The reader is referred to the 
works of Sun (1998; 2000) for more details on the actual 
implementation these procedures. 

It is to be observed that, in the case of 3D pre-stack depth 
migration the multiple-weighted diffraction stack may be 
economically unfeasible  because several common-offset 
sections must be at least twice migrated. Our time 
migration scheme, however, considers straight rays, so 
the problem of finding the stationary point location is 
dramatically simplified.  

Consider that there is  a stacked section that satisfactorily 
represents a zero-offset section. After preprocessing, this 
stacked section is supposed to contain mostly prim ary 
reflections . Let us choose the reflector dip angle, α=θ, as 
the attribute to be extracted from the multiple -weighted 
diffraction stack approach.  

By means of Equations (2), this θ section can directly 
provide the center the n-th projected Fresnel Zone for any 
common-reflection angle, as computed by Equation (7).  

Conclusions  

In this work, we have reviewed and discussed some 
important aspects of 2.5D true-amplitude Kirchhoff   
migration in the common-angle domain. We have 
emphasized the definition and construction of projected 
Fresnel Zones, which can be seen as optimal apertures to 
perform the migration. The construction of the projected 
Fresnel Zone depends on the estimation of the reflector 
dip. For that estimation, we proposed the multiple-
weighted diffraction stack procedure applied in the post-
stacked domain. Restriction the migration aperture to a 
projected Fresnel Zone is expected to provide migration 
results with better quality and less computational effort.  

At the present stage, we are working to derive a more 
stable way to obtain the reflector dip using the multiple-
weighted diffraction stack. We expect to show soon good 
results of this technique. Finally, we mention that an 
analogous approach of this paper can be also used for 
the common-offset configuration.  
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Figure 1 – Geometry used to define the common angle projected Fresnel Zone. 
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