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Abstract 

The Gaussian Beam concept has been of great 
importance for works on modeling, migration and 
inversion, during the last two decades.This work then 
joins the flexibility of the true amplitude (diffraction stack) 
Kirchhoff migration process with the regularity of the high 
frequency Gaussian Beam description of the wavefield as 
Green function, in some simple numerical examples of 
geophysical exploration interest. Our process can be 
named as Kirchhoff-Gaussian Beam Prestack Depth 
Migration (KGB-PSDM) in a true amplitude sense.   

Introduction 

During the I and II workshops of research on explorational 
risks for oil and gas, on the behalf of the Cooperative 
Reseach Network (CRN) (UFPA, UFBA, UFRN, UFAL, 
UFC and UFPE), held successively in Natal-RN and 
Belém-PA, Brazil, last year, we have presented the 
theoretical and numerical results of a true-amplitude, 
prestack, Kirchhoff-type depth migration process (Ferreira 
and Cruz, 2004 a,b) using the concept of Gaussian 
Beams (Popov, 1996; Červený, 2000; Červený, 2001) as  
Green function of the imaging problem. In summary, the 
migration operator considered in this case is the same as 
treated in Schleicher et al. (1993), but presently it is 
modified so that the analytical particle displacement is 
represented by a superposition of Gaussian Beams 
(GBs).  

By using the main characteristics of the GBs 
superposition integral, such as its description in any point 
inside the considered medium (e.g., over structural 
interfaces or over the Earth surface) and the Fresnel 
volume elements (Hubral et al., 1993; Schleicher et al., 
1997), we have projected the integration domain of the 
GBs superposition integral, in some point somewhere 
inside the medium, over a given surface (fictitious or not), 
towards the projected Fresnel zone of the seismic 
experiment, over the (Earth) acquisition surface. This 
procedure permitted to us to physically interpret the 
analytical expression of the GBs superposition weight-
function (Klimeš, 1984) and keep unchanged another 
weight-function, the latter related to the true-amplitude 
migration process described in Schleicher et al. (1993). 
The insertion of the final GBs operator in terms of the 

projected region (i.e., the Fresnel zone and the projected 
Fresnel zone) into the kernel of the Kirchhoff migration 
integral permits to interpret the diffraction stack process in 
two steps. For each point belonging to the diffraction 
surface, constructed for each source-receiver pair and for 
each point to be imaged in depth, its projected Fresnel 
zone on the Earth surface is determined. In the following, 
we stack the traces in the data domain that are restricted 
to a beam inside the predetermined Fresnel zone and 
input the result referred to the reference trace into its 
Huygens surface. Next, the diffraction stack is performed 
along this surface and the result is placed into its depth 
position.  

In this work we show the main numerical results obtained 
so far using the modified Kirchhoff operator cited above. 
We include as examples the imaging of structures that 
range from plane reflectors (dipping or not) to curved 
reflectors, all derived from classical examples found by 
exploration seismic. Although the velocity model 
considered a priori is simple, we show that the migration 
process is able to preserve amplitude and that can be 
used in several other types of analyses, such as 
AVO/AVA and multiple diffraction stack (Tygel et al., 
1993). 

Method 

The migration operator to be considered, in the frequency 
domain, is (Schleicher et al., 1993)  
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where A is the migration aperture, M = M(x,z) is an 
arbitrary point in depth, )( ξ
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spreading losses, T, )( 21 ξξ=ξ
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geophones along the acquisition surface, )( ξ
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analytical particle displacement, formed by the real 
particle displacement )( ω,u ξ
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 plus its Hilbert transform, 

as imaginary part. The superscript T means transposition. 

In the present work, we consider that the analytical 
particle displacement )( ω,U ξ

r
 is represented by the 

following expression 
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where HF is the Fresnel zone matrix (Schleicher et al., 

2004), , where NT
GR

T
GSR

T
S NΓNΓΛ += SR and NGR are 

second time traveltime derivatives matrices, according to 
Schleicher et al. (1993), while ΓS

T and ΓG
T are matrices 

related to the data acquisition geometry. All those 
matrices are 2 x 2. The coordinate vector 

TPPP , )( 21 ξξ=ξ
r

 belongs to a subset of the migration 

aperture A, corresponding to the projected Fresnel zone, 
here denominated by AP. In this work, we consider that 
only the first Fresnel zone defines AP. )( Pdet ξQ

r
 and 

 are the geometrical spreading and the 
emergence angle at G (geophone), respectively. Eq. (2) is 
a complex conjugate form of the modeling integral used to 
construct synthetic seismograms using the Gaussian 
Beam concept. The weight-function 

Gcosθ

)( Pξ
r

Φ  is a quantity 
that asymptotically reduces Eq. (2) to the zero order ray 
theory solution (Červený, 2000). In this work, it is 
represented by (Ferreira and Cruz, 2004 a,b) 
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This weight-function was established under the 
assumption that it is proportional to the difference 
between the wavefront curvatures of two types of waves, 

one representing the central ray and the other 
representing the paraxial rays nearby. Intuitively, this lead 
us to the idea that this difference could be proportional to 
the Fresnel zone of the experiment. It is a well known fact 
that when a seismic ray reflects over a given surface, at 
some reflection point MR, the wavefield is “smeared” 
around this point, precisely in Fresnel zones around the 
reflection point. In our interpretation, then, Eq. (3) simply 
states the fact that the paraxial rays that influence the 
wavefield observed at some reflection point Mj are those 
points belonging to a certain Fresnel zone (preferably the 
first) in depth. In other words, we stress the strong 
constraint imposed by Eq. (3): in the numerical 
implementation, only those rays located inside the (first) 
Fresnel zone shall be considered by Eq. (2). At the same 
time, this asymptotically reduces the same equation to the 
zero order ray theory solution. 

Finally, )(e)(
P,RTiPA ξξξ
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Inserting Eq. (2) in (1), making use of Eq. (3), the final 
migration operator in the time domain is given by 
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Here  is the projected Fresnel zone 
matrix (Schleicher et al., 2004), while the double dots 
indicate second derivatives with respect to time of the 
analytical particle displacement. 

ΛHΛH 1−= F
T

P

In Figure 1 we present a geometrical explanation of Eq. 
(4). In 2D, we depict the representation of a seismic 
experiment in which a specular ray SMRG and its paraxial 
Fresnel rays SMjG (j = 1, 2, …, n) determine a set of 
points over a given reflector, known as Fresnel zone 
(Schleicher et al., 2004), as well as its projection towards 
the seismic acquisition surface. According to the 
diffraction stack theory (Schleicher et al., 1993), point ∗

0ξ
r

 
is a stationary point corresponding to the reflection event 
in MR and that belongs to the Huygens surface exactly at 
the tangency point, where the reflection and diffraction 
curves coincide. With the determination of the projected 
first Fresnel zone, we look for points jξ

r
 belonging to this 

(first) zone, and that are part of the same reflection curve, 
corresponding to the neighbor point of MR in depth.   

Figure 1 – 2D sketch of a seismic experiment 
showing the specular ray SMRG, its Fresnel zone 
in depth, the corresponding paraxial rays and the 

projected Fresnel zone. Point 
r

 is a stationary 
point belonging to the Huygens curve. The 
paraxial point ξ

∗
0ξ

1
r

 and 2ξ
r

 belong to the same 
reflection curve. 

Synthetic examples 

We have implemented Eq. (4) for the imaging of 
geological structures containing plane and curved 
reflectors, immersed in an homogeneous media where 
the layers present constant velocities. We consider that 
the models are formed by a single one reflector in depth, 
above them the P-waves velocities are v1 = 2000 Km/s 
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and below them the velocities are v2 = 3500 Km/s. In 
order to generate synthetic data for the migration process, 
a 2.5D Kirchhoff modeling scheme was implemented, with 
a common-offset configuration using 2h = 25 m, in the 
first case, and 2h = 15 m, in the second case. In the case 
of the plane reflectors, the spacing among sources and 
geophones was 25m, while in the case of the curved 
reflector this spacing was set to 15m. The seismic 
wavelet used in the modeling experiment was zero phase 
Gabor wavelet, with dominant frequencies of 10 Hz and 
20 Hz, with a total duration of 10ms and 20 ms, 
respectively. In the migration process, the inner GBs 
integral in Eq. (4) is a 2.5D of Eq. (2), where intra-plane 
factors were introduced in order to correctly simulate the 
amplitudes. It must be bear in mind that the introduction 
of this intra-plane factors does not affect the weight-
function )( Pξ

r
Φ  in the 2D case. 

In all cases studied bellow, the Fresnel volume elements 
(in depth and projected towards the acquisition surface) 
were completed determined by using dynamic raytracing 
(DRT) (Červený, 2001). The initial conditions for the DRT 
system, then, are complex, which also allows the 
calculation of quantities that are used in the construction 
of the GBs (e.g., beam half-width, imaginary part of the 
geometrical spreading matrix). In order to guarantee 
beams with very narrow half-widths at the endpoints of 
the rays, we use the plane-wave condition at the 
geophones, using the criteria described in Müller (1984). 
Since the main objective of this work is the migration 
process, their respective synthetic data will not be shown. 
Only the image results will be considered. 

• Plane reflectors 

In this first example, we consider two plane reflectors, one 
horizontal, located at depth z = 2 Km, and a second 
reflector dipping 7º to the left. In these examples we have 
used the following values for the discretization steps in 
the x and z directions: ∆x = ∆z = 25m. 

In Figure 2a we have the result of the conventional 
Kirchhoff migration for the case of the horizontal reflector. 
Since the velocity model is assumed to be the true one, 
the migration process correctly reconstructed the reflector 
in its depth position. Also, as it is known, border artifacts 
are generated due to insufficient data to stack at those 
places (Hertweck et al., 2003). The KGB-PSDM 
migration, which considers the stacking of only those 
traces belonging to the projected Fresnel zone (Figure 
2b), automatically eliminates these artifacts. Moreover, 
the image is less aliased with respect to the one obtained 
by the Kirchhoff process. 

In the case of the dipping reflector (Figure 2c and 2d), the 
image is again reconstructed in its true depth position. In 
the Kirchhoff process, the same border effects are 
observed. In the KGB-PSDM process, on both borders 
the artefacts are not seen, except at some isolated places 
in the image, such as near the depths 200-400 m. But 
again the image obtained by the KGB-PSDM process is 
less aliased than the one obtained by the Kirchhoff 
process. 
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 Figure 2 – Plane reflectors. 
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As for the amplitudes, in both cases there seems to exist 
suitable differences based on each case considered. In 
the horizontal plane reflector, the amplitudes behave well 
along the whole reflector, but near the borders, the image 
resolution seems to be reduced. This fact may be related 
to the stacking of an odd number of traces inside the 
Fresnel zone at the borders. However, as shown in 
Hertweck et al. (2003), the amplitude reconstruction in 
these position are only half of its true value, due to 
insufficient data to stack there. On the other hand, when 
we consider the dipping reflector case, this fact does not 
seem to influence in the final image. Either on the right 
border or on the left border, the amplitudes reconstructed 
by the KGB-PSDM process seem to be similar to the 
ones reconstructed by the Kirchhoff process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figures 3a and 3b we make a comparison among the 
picked peak amplitudes obtained by the two true 
amplitude migration processes, taken along the two 
reflectors, and we have compared them to the amplitudes 
obtained by the modeling scheme. In the horizontal plane 
reflector case, we observe an excellent agreement in the 
trends of both curves, considering that along the whole 
reflector these amplitudes are overestimated by 3% of the 
original values. This is again related to the stacking of 

more information for each point in depth, due to the 
influence in the amplitudes of its neighbour reflection 
points. On the other hand, on the borders occurs an 
underestimation of amplitudes, as previously commented 
and expected. However, the agreement in the behaviour 
of the amplitudes is considered excellent. For the dipping 
reflector case, where the situation seemed visually better 
at first sight, there occurs an overestimation on the left 
border, followed by an agreement in the trends upwards, 
ending in underestimation of amplitudes on the right 
border. Again, the agreement in the amplitude trends is 
considered excellent. 

• Curved reflectors 

In this particular case, we consider the existence of a 
curved reflector in the form of a syncline, located at a 
depth z = 0.8 Km, where its trough reaches a depth of z = 
1.1 Km. In this case, the discretization steps in the x and 
z directions were: ∆x = ∆z = 15m.  

In Figure 4a we have the result of the Kirchhoff migration 
process for the syncline case. Again borders effects 
inherent to the process are observed on the borders. In 
Figure 4b, we depict the result of the imaging using the 
KGB-PSDM process. We visually note a decrease of the 
border effects and a higher resolution in the final image. 

 

 
(a)  
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 (b) 

 

 Figure 3 – Picked peak amplitudes for the 
plane reflectors. (a) Horizontal reflectors. (b) 

Dipping reflector. 
 

 

 (b) 
 

 Figure 4 – Curved reflectors. 
 

For qualitative effects, Figure 5 shows the comparison of 
the two picked peak amplitudes along the reflector, 
considered by the two migration methods. We have not 
compared the amplitude picking of the two methods with 
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respect to the Kirchhoff 2.5D modeling scheme, due to 
the fact that the syncline model presents more than one 
single arrival in some geophones that record the arrival of 
the trough area, i.e. the caustic area. In fact, there exist 
up to three arrivals from this region, so that each 
observation should be isolated from the others (Tygel et 
al., 1998) in order to compare each of them with the ones 
obtained from the migration processes. Thus, we have 
chosen to compare only the amplitude pickings obtained 
by the two migration methods, where the ability of our 
algorithm in leading with caustics and multiple arrivals 
was tested in regions where the focusing of the wavefield 
generally occurs. We observe then that there occurs an 
excellent agreement in the trends of the amplitude curves, 
with some isolated particularities. In general, along the 
whole reflector the KGB-PSDM process shows itself 
equivalent to the Kirchhoff process. On the left of the 
curve we observe a small overestimation in the 
amplitudes, but with an excellent agreement in their 
trends. On the rest of the reflector, the behaviour of the 
amplitude curve for the KGB-PSDM process is in 
excellent agreement with the values of the amplitudes 
obtained by the Kirchhoff process, where again on the 
right border there occurs an underestimation in the values 
of the amplitudes. However, again all the amplitude 
trends are in excellent agreement when compared to the 
conventional process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency content of the data 

We shall discuss an important point that derives from the 
fact that Fresnel zones (FZs) are frequency dependent 
quantities. In modeling, the determination of FZs depends 
on their positions, on the acquisition geometry of the data 
and of the (dominant) frequency content of the seismic 
source (Schleicher et al., 1997; Schleicher et al., 2004). 
Although these are, to some extent, known and controlled 
quantities, they lead to the formation of FZs of different 
sizes along the pathway of a ray or over a given reflector 
surface. In the case of the reflector surface, the FZs shall 
also depend on the curvature of the reflector, since some 
sub-matrices of the Bortfeld’s propagator depends on the 

curvature of the reflector, in the case of a reflection point, 
and are essential to the calculation of the analytical form 
of the FZ matrix. In this case, it is reasonable to suppose 
that several FZs, of different sizes, are formed for one 
single reflector and, being projected towards the 
acquisition surface, they must also be present in the 
seismic data. Thus this means that this frequency range 
must be a priori known before migration. We shall 
illustrate this effect for the case of the syncline model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 – Amplitude comparison for the syncline 

model.  
 

 

 

 

 

 

 

 

Figure 6 – Frequency content of the 
data. 

 

 

 

In Figure 6 we show three examples of imaging for the 
same geological model using different frequencies for the 
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FZs. In Figure 6a, we have the imaging using the 
dominant frequency (10 Hz) of the seismic signal. Only 
the flat parts of the syncline structures are correctly 
imaged. The trough of the syncline is not imaged, since 
the FZs there are not seen by the KGB-PSDM migration 
process. In Figures 6b and 6c we have used 50 Hz and 
100 Hz, respectively. This time the trough is correctly 
imaged at the expense of the flat parts (borders). This 
indicates that, when imaging, the whole frequency 
spectrum must be considered. We propose then to rewrite 
Eq. (4) in the following form 
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where in our interpretation  and the 
frequency content of each FZ is considered and is 
summed as a final input for the Kirchhoff summation. 
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PP ξHH
r
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Conclusions 

We have developed a true-amplitude prestack Kirchhoff-
type depth migration process in which we considered as 
Green function an integral operator that represents a 
superposition of Gaussian beams.  

We have tested the KGB-PSDM algorithm in the imaging 
of plane and curved geological models. In the plane 
models, we considered two distinct cases: an horizontal 
plane reflector and a dipping plane reflector. Both images 
were obtained considering a simple homogeneous 
velocity model. In both images, the KGB-PSDM 
considerably eliminated the presence of migration 
artifacts, yielding less aliased sections. Some visual lack 
of resolution eventually ocurred, as in the case of the 
plane horizontal reflector, mainly due to the number of 
stacked traces inside each projected Fresnel zone on the 
borders. But, overall, both final images were less aliased 
than the ones obtained by the Kirchhoff process. 

The comparison in the behaviour of amplitudes for these 
two cases showed several effects that are not visually 
seen in the images. In both cases, the tendency in 
amplitude trends are in excellent agreement, considering 
that on both borders sometimes occur overestimation and 
underestimation of amplitude values. Far from the 
borders, the KGB-PSDM process seems to overestimates 
the amplitude values in at least 3%. This fact is related to 
the stacking of informations referred to the neighbour 
reflection points in depth of the image point. 

The KGB-PSDM algorithm has also been tested on 
curved reflectors, such as a syncline. While the image 
obtained by the Kirchhoff process showed the well known 
presence of migration artifacts, the KGB-PSDM process 
obtained a less aliased image. The comparison of 
amplitudes values recovered by both migration processes 
showed some similarities with the case of the plane 
reflectors, but also with an excellent agreement in the 
amplitude trends. In this particular example, we have only 
compared the amplitude values recovered by both 
migration processes, since in the syncline case there 

occurs multiple arrivals from the caustic region located in 
the trough of the structure and this events should be first 
isolated for comparison reasons.  

We have also tested the algorithm with the frequency 
content of the data. We have come to the conclusion that 
to reach a full imaging capacity, our operator must 
consider the whole spectrum of frequency present in the 
data. Due to this fact, we propose to rewrite the KGB-
PSDM operator in order to consider the contribution of 
several FZs of diffrent frequencies for each trace.  
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