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Summary

True-amplitude migration of the Kirchhoff type is a task
of high computational effort. A substantial part of this
effort is spent on the calculation of proper weight func-
tions to countermand the effect of geometrical spread-
ing in the data. The generation of the weights is usually
very time consuming. Also, the weights must be stored.
Together with the traveltime tables which are needed
for the stacking surfaces, this leads to large demands in
computer storage in addition to the high requirements in
CPU time. In this paper we propose a strategy to com-
pute the weight functions directly from coarsely-gridded
traveltimes. Together with a fast and accurate method
for the interpolation of the traveltimes onto the required
fine migration grid, this leads to considerable savings in
CPU time as well as storage. Application to a complex
synthetic data set demonstrates the high quality of our
approach.

Introduction

True-amplitude prestack depth migration can be imple-
mented as a specific form of the Kirchhoff type migra-
tion. In addition to providing a focused structural image
of the subsurface, information on the reflection strength
at the discontinuities in the medium is also available
from such an image. This information can be used for
AVO studies, which play a key role in reservoir character-
isation, for example to estimate shear velocities without
measuring shear waves, solely from PP data.

True-amplitude migration is carried out in terms of a
weighted diffraction stack. For each subsurface point
the seismic traces are stacked along the diffraction time
surface for that point. Individual weight functions are
applied during the stack to recover the reflection ampli-
tude. The weights depend on dynamic wavefield proper-
ties which are usually computed by dynamic ray tracing
together with the diffraction traveltimes. For a 3D ex-
periment this results in a tremendous amount of auxiliary
data which have to be generated and stored, thus making
true-amplitude migration a task of high computational
costs.

We suggest to reduce these costs with the traveltime-
based strategy proposed in this paper. Here, the require-
ments in computer storage are significantly reduced, as
the only auxiliary quantity required are the diffraction
traveltimes, sampled on coarse grids. A fast and accu-
rate interpolation is applied to obtain the stacking sur-
faces on the fine migration grid. As the weight functions
can be directly expressed in terms of the interpolation
coefficients and are computed on-the-fly during the mi-
gration, no additional quantities are required. Thus, the
traveltime-based strategy leads to major savings in com-
puter storage as well as in CPU time.

In the next section we will begin with an outline of the
method. After a short introduction to true-amplitude
migration, we will describe the traveltime-based strat-
egy in detail, including the traveltime interpolation and
the determination of the weight functions. We will then
illustrate the method with a complex synthetic exam-
ple. The resulting image as well as the reconstructed
reflection coefficients demonstrate the high accuracy of
the method. We will finalise this paper with our conclu-
sions.

Method

For simplicity we will consider a 2.5D symmetry in this
paper, where the medium does not vary in the direc-
tion perpendicular to the acquisition line. The method,
however, is equally valid for the 3D case (see Vanelle,
2002).

Following the derivation of Schleicher et al. (1993), Mar-
tins et al. (1997) have shown that in 2.5D the true-
amplitude migrated output V (M) at the subsurface
point M can be obtained from the weighted diffraction
stack described by

V (M) =
1√
2π

∫

A

dξ W (ξ, M) D
−1/2
t U(ξ, t)

∣

∣

∣

∣

t=τD(ξ,M)

.

(1)

In Equation (1) the operator D
−1/2
t denotes the Hilbert

transform of the time half-derivative of the seismic data
U(ξ, t), where the data are assumed to consist of an-
alytic traces. The integration is carried out over the
aperture A which contains the considered trace posi-
tions that are represented by the so-called configuration
parameter ξ. The stacking curve is the diffraction tra-
veltime t = τD(ξ, M) for the depth point M , calculated
in a previously determined macro-velocity model. The
weight function W (ξ, M) for the common-offset case
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considered in this paper is given by
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(Hanitzsch, 1997). Here, θS and θG are the emergence
angle at the source (S=S(ξ)) and the incidence angle
at the receiver (G=G(ξ)), respectively. The velocities at
the source and receiver positions are vS and vG. The 2D
scalar point source ray propagators Q2,SM and Q2,GM

are closely related to the in-plane geometrical spreading
between the source or receiver and the image point M .
The quantities σSM and σGM denote the out-of-plane
spreadings, and, finally, the kmah indices κSM and κGM

account for the number of caustics along the rays.

While the quantities σ and cos θ can be obtained from
kinematic ray tracing, dynamic ray tracing is required
for the determination of the Q2. In the traveltime-based
approach we express Q2 as well as σ and cos θ in terms
of first- and second-order traveltime derivatives. Thus,
dynamic ray tracing is not required as these values are
obtained from traveltimes. The traveltime derivatives
are also used for the interpolation onto the fine migra-
tion grid. As all quantities are computed on the fly,
only coarsely-gridded traveltimes need to be stored (in
contrast to the conventional approach, where we must
store the Q2, σ, and cos θ in addition to the travel-
times), thus a considerable amount of storage and com-
putational time can be saved. We will now describe the
traveltime interpolation method which will lead to the
mentioned replacement of Q2, σ, and cos θ by travel-
time derivatives.

We use the following expression for the traveltime from
a source S at the position s to a subsurface point M at
the position m (Vanelle and Gajewski, 2002):

T 2(s,m) = (T1 − p1∆s + q1∆m)2

−2 T1 ∆s ·N1∆m

−T1 (∆s · S1∆s−∆m · G1∆m) .(3)

The traveltime T1 is that from a source at s0 to a sub-
surface point at m0. We will refer to the combinations
of (s0,m0) as the expansion points that are represented
by the coarse grid. The slowness vectors p1 and q1 are
the first-order traveltime derivatives at the source and
subsurface point, respectively. The three matrices

S1ij
= − ∂2T

∂si ∂sj
, G1ij

=
∂2T

∂mi ∂mj
,

N1ij
= − ∂2T

∂si ∂mj
,

are the second-order derivatives of the traveltime. Cor-

respondingly, we use

T 2(g,m) = (T2 − p2∆g + q2∆m)
2

−2 T2 ∆g · N2∆m

−T2 (∆g · S2∆g −∆m · G2∆m) (4)

for the traveltime from a receiver G at the position g
to a subsurface point. Since the traveltimes are in any
event required for the stacking surface, we assume that
these are available and sampled on coarse grids. As de-
scribed in Vanelle and Gajewski (2002), all coefficients in
Equations (3) and (4) can be determined from the tra-
veltime tables. The coefficients can then be applied for
the interpolation of the traveltimes onto the fine migra-
tion grid. If only first-arrival traveltimes are given, the
kmah indices are zero. If later arrivals are considered,
it is convenient to generate the tables for the individ-
ual arrivals with an algorithm that outputs them sorted
by kmah, e.g., with the wavefront-oriented ray tracing
technique by Coman and Gajewski (2001).

The relations between the quantities that appear in the
weight function (2) and the coefficients of Equations (3)
and (4) are
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cos θS = vS p1z
, cos θG = vG p2z

(5)

(Vanelle, 2002). With them, we can express the weight
(2) by

W (ξ, M) =
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In the following section we will apply the traveltime
interpolation (3) and (4) and the weight functions (6)
to a synthetic data set.

Example

We have applied the method to a complex velocity model
displayed in Figure 1. Ray synthetic seismograms were
obtained from a 2.5D ray modelling package resulting
in 60,000 traces which cover an offset range from 0 to
1980 m. Figure 2 shows the zero-offset section. The
required traveltime tables were computed with a 3D fi-
nite differences eikonal solver in a smoothed version of
the model and stored on a 100 m grid. These were the
only input data used for the computation of the true-
amplitude weight functions. Only primary reflections and
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first arrivals were considered during the migration.

The depth migrated section is shown in Figure 3.
The smile-like migration artifacts are mainly caused by
abrupt amplitude variations along reflectors and missing
diffracted energy at the pinch-outs in the model (cf. the
zero-offset section in Figure 2). They stem from the
ray tracing program applied to generate the synthetic
seismograms. These inconsistencies in the input data
would lead to artifacts in any migrated section of this
data set, regardless of the migration algorithm, and are
not a problem of our method in particular.

The common-image gather displayed in Figure 4 was ex-
tracted at a distance of 2.6 km. The events are flat and
the AVO behaviour is altogether smooth. Some scatter-
ing of the amplitudes can be observed at the deeper re-
flectors. This is again caused by the missing diffraction
events at the pinch-outs and the discontinuous ampli-
tudes in the input data already discussed above.

In order to verify the quality of the recovered reflectiv-
ity, we have chosen the top reflector which is horizontal
at the distance of 2.6 km. This makes it possible to
compare the results to the analytic solution because the
incidence angle is available. Also, the velocity in the up-
permost layer is constant which enables us to compare
our results to those from a migration with the analytic
form of Equation (2) for the constant velocity case. We
have, therefore, picked the amplitudes from the image
gather in Figure 4 and from the corresponding gather
obtained with the constant velocity weight. Both are
displayed together with the analytic result in Figure 5.
As the differences between our results and the analytic
one as well as the results from the constant velocity mi-
gration are practically negligible, this reflects the high
accuracy of the migration weights obtained from travel-
times.

The traveltime-based migration took about the same
time that was required for a purely kinematic migration
(i.e., no weight function is applied at all) when the
traveltimes are interpolated linearly. In that case the
grid spacing must be chosen smaller than is possible
with the hyperbolic interpolation of traveltimes used
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Fig. 1: The velocity model.

for this study. Since a dynamic ray tracing routine
was not available for a direct comparison, we have
tested the computational efficiency of our method
for a model where we could analytically compute the
dynamic wavefield properties required for the weights.
The comparison showed that application of our method
leads to savings in computational time of a factor of
five. At the same time the computer storage could be
reduced by a factor of 100. We expect that the gain in
efficiency that can be achieved in three dimensions will
be a multiple of these numbers.

Conclusions

By applying the traveltime-based strategy for true-
amplitude migration we can obtain a dynamically
correct depth migrated image at the computational cost
of a kinematic migration. In comparison to using the
standard weight functions (e.g., obtained from dynamic
ray tracing) the computational speed of our method is
five times higher and the storage requirements are a
factor of 100 less in the case of a 2.5D medium. We ex-
pect that the computational efficiency concerning both
CPU time and storage will be significantly enhanced in
the 3D case. We have also shown that the reflection
coefficients can be recovered with the same accuracy
as for standard weights. Thus, the traveltime-based
approach is a promising strategy, especially in view
of a 3D implementation that we are currently working on.
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Fig. 2: The zero-offset section obtained by ray mod-
elling.

1

2

3

D
ep

th
 [k

m
]

-2 0 2 4 6 8
Distance [km]

Fig. 3: The true-amplitude depth migrated section. The
weight functions were obtained using coarsely-gridded
traveltime tables only, no dynamic ray tracing had to be
applied. The computational time required to perform the
true-amplitude migration was comparable to a kinematic
migration. The vertical line indicates the position where
the common-image gather in Figure 4 is taken.
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Fig. 4: Common-image gather taken at a distance of
2.6 km. A mute was applied to the larger offsets at
shallower depths to avoid the pulse stretch. The events
are flat and the AVO behaviour is altogether smooth.
Some scattering of the amplitudes can be observed at the
deeper reflectors. This is caused by the missing diffrac-
tion events in the input data discussed in the text.
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Fig. 5: Reconstructed reflection coefficients picked from
the image gather in Figure 4 (blue circles) and from
a migration with a constant velocity (analytic) weight
funtion (green crosses). Both are compared to the exact
solution (red line). The differences are negligible, which
reflects the high accuracy of our method.

Ninth International Congress of The Brazilian Geophysical Society


