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Abstract
We describe an algorithm for simulating the propagation
of a seismic wawefront, modeled by a mesh of triangles,
through a general three-dimensional geophysical model,
with automatic control of sampling density over the expand-
ing front. We show that wavefront modeling is consider-
ably simplified by using the Quad-edge mesh data struc-
ture. We also describe a control mechanism to eliminate
samples when the front contracts.

1 Introduction
Simulation of a seismic wavefront propagating through
a general three-dimensional geophysical model has sev-
eral applications in geophysics and petroleum engineer-
ing, such as the validation of seismic inversion software.
The wavefront must be represented by some kind of mesh,
whose vertices move with time. Since the front may ex-
pand (and sometimes contract) a lot during the simulation,
the simulator must insert or delete vertices as needed, in
order to maintain a fairly uniform mesh density at all times.

The code that handles the changes in the mesh topology
is usually the most complex, expensive, and error-prone
part of the simulator. We show here that a particular repre-
sentation of two-dimensional meshes, the Quad-edge data
structure, leads to considerable simplifications of the mesh
maintenance code.

The principles of wavefront-based seismic simulation are
presented in section 2. In section 3 we describe the Quad-
edge data structure and its basic topological operators.
The WFC algorithm, including the vertex density control
mechanism, is detailed in secton 4, in terms of the Quad-
edge operators. Section 5 shows some examples gener-
ated with a preliminary implementation of this method (still
without density control).

2 The WaveFront Construction method
The classical wavefront-based method is a graphical pro-
cedure based on Huygens’s principle (7): the wavefront
Wt+h for a traveltime t + h is calculated from a previous
one, Wt, as the enveloping surface of spheres with their
centers distributed along Wt and with radii hv, where v is
the local speed of propagation at the center of the sphere.

This method assumes that the geophysical model is lo-
cally homogenous over each sphere, and is practical only
for isotropic structures with two-dimensional variation—not
for the general three-dimensional models which are most
needed in practical applications.

2.1 Sample nodes and the wavefront mesh
The WaveFront Construction (WFC) method of Vinje
et al. (8) can be thought as a hybrid of seismic ray trac-
ing and a computer implementation of the classical sphere-
envelope method. It uses a discrete representation of the
wavefront, consisting of a set of records (nodes), repre-
senting sample points on the moving wavefront. Each node
s contains the coordinates s.c of the corresponding sam-
ple point, its velocity vector s.v (which specifies the local
speed and direction of propagation), its oscillation mode
s.m (see section 2.4), and possibly other local properties
of the wavefront, such as intensity and polarization. Finally,
the node contains a count s.k of interactions with reflectors
already simulated along the ray traced by the point s.c.

In many situations, the set of sample points is not enough:
one must also link neighboring nodes in some way, e.g. so
as to form a triangular mesh (9; 10). Uses of such a mesh
include visualization of the wavefront, and detecting its ar-
rival at a specified point (3).

Given a set Nt of wavefront nodes belonging to Wt, the
set Nt+h of the next wavefront (Wt+h) is obtained by initial-
value ray tracing from each node of Nt. See figure 1.

Figure 1: Basic step of the WFC method: The initial wave-
front Wt and its nodes Nt (white dots), node propagation
(dashed arrows), the new nodes Nt+h (black dots) and the
new wavefront Wt+h.

The procedure described above is merely a parallel version
of ordinary ray tracing. A distinguishing feature of WFC is
the introduction of a node density control mechanism in
order to ensure a sufficiently dense set of sample points
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throughout the simulation. As described by Červený (7),
whenever the nodes in some part of the wavefront fail to
satisfy some local density criterion, a new node is cre-
ated. Its initial conditions are obtained from the neighboring
nodes in some sort of interpolation.

Unlike the sphere-envelope method, the WFC approach
does not assume local homogeneity. Within a single time
step, each ray may follow a curved path, or even hit the
interface between very different media, where it may be
reflected or refracted. See figure 7. As long as the time
step and minimum sample density are appropriately cho-
sen, neighboring nodes of Nt remain close to each other
in Nt+h, so that the mesh structure is mostly unaffected by
such interactions.

2.2 Geophysical model
We assume a geophysical model consisting of a finite num-
ber of layers where the relevant parameters of the medium
(such as density and wave velocity) change smoothly with
position. Layers are separated by surfaces where the pa-
rameters may change abruptly. These surfaces are cus-
tomarily called reflectors, even when they reflect only a
fraction (or none) of incident seismic signals.

2.3 Ray modes and mode conversion
Seismic signals propagating through isotropic media must
be decomposed into two oscillation modes, pressure (P)
and shear (S) waves, because each mode usually propa-
gates at a different speed (7). A ray of either mode will
follow a smooth path within a single layer. When it hits a re-
flector, the ray will usually split into four distinct secondary
rays: either P or S, each either reflected (r) back into the
same layer, or transmitted (t) into the next one with some
refraction (7). These four rays have the same starting point
but may have different directions and propagation speeds.

For homogeneous but anisotropic media, one must also
separate the S mode into two principal polarized compo-
nents, each with its own propagation speed; so the number
of secondary rays increases to six. Whereas a ray in a ho-
mogeneous medium (isotropic or not) propagates along a
straight line, in a smooth but non-homogeneous medium it
follows a curved path defined by a differential equation (7).
We will not discuss these model extensions here, since
their implementation is relatively straightforward and inde-
pendent of mesh representation and maintenance—which
are the focus of this paper.

2.4 Ray signatures
In seismic ray tracing, one often wants to study only rays
that have had a specific history of interactions with the re-
flectors: say, those rays that started in P mode, continued
in S mode after crossing the the topmost reflector R1, were
reflected at the next reflector R2, still as S, then transmitted
again through R1 and converted back to P. This history can
be encoded by the string 〈P, 1tS, 2rS, 1tP〉, which is called
the signature of the rays’ final points.

In the same way, a wavefront of either S or P mode will

usually split into four secondary wavefronts as it hits a re-
flector. The comments above, and the same encoding by
signature, apply to wavefronts as well as to rays.

3 The Quad-edge data structure
A triangular mesh is a special case of a two-dimensional
subdivision: a partition of an arbitrary surface into simpler
parts — vertices (points), edges (arcs, straight or curved)
and faces (polygons, flat or curved). The adjacency rela-
tions between these elements comprises the topology of
the mesh; whereas the vertex coordinates and the shape
of edges and faces constitute its geometry.

3.1 Mesh structures
In 1975, Baumgart observed that the topology of a subdi-
vision is completely specified by the adjacencies of each
edge, namely the two terminating vertices, the two adja-
cent faces, and the next edges around those vertices and
faces (1). Indeed, the topology of a subdivision is deter-
mined by the graph (2) of its edges and vertices, plus the
order of edges around vertices and faces. He implemented
this insight in the Winged Edge data structure (1), where
each edge is represented by a record with pointers to four
adjacent edges.

After Baumgart’s work, several other data structures have
been proposed for the same goal. Here we consider the
Quad-edge of Guibas and Stolfi (4). Its main advantages
are its simplicity, and its ability to represent not only the
subdivision but also its dual. The Quad-edge structure is
abstractly defined by a set of motion functions, that allow
“walking” from an element to the adjacent elements; and a
pair of topological operators, that modify the data structure
and hence the mesh topology.

3.2 Arcs and motion functions
The fundamental concept of the structure is the arc or ori-
ented edge: an edge of the subdivision, taken with a spe-
cific orientation and seen from a specific side of the sur-
face. Thus any arc e has a well-defined origin vertex, eOrg ,
a destination vertex, eDest , a left face, eLeft and a right
face, eRight . The symmetric of e, eSym, is the same undi-
rected edge taken in the opposite direction.

The orientation of arcs also allows us to define the ring of
arcs of a vertex v, as being the (circular) list of all arcs with
eOrg = v, ordered so that the left face of any of those arcs
is the right face of the next arc in that list. The next arc
with same origin, eONext , is the arc that follows e in this
ring. The next arc with same left face, eLNext , is obtained
following boundary of the face F = eLeft in the counter-
clockwise direction.

The dual of a subdivision is another subdivision of the
same surface, obtained by choosing a dual vertex inside
every face, and connecting two dual vertices by a dual edge
whenever the corresponding faces are adjacent. By defi-
nition, the Quad-edge represents simultaneously and uni-
formly both the subdivision and its dual. The rotated ver-
sion of an arc e, denoted eRot , is an arc of the dual edge
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that crosses e, directed from eRight to eLeft and oriented
so that the ring of arcs around the face eRight corresponds
to the ring of arcs out of the dual vertex eRot Org .

Here we assume that the surface is orientable, and that all
arcs are seen from the same side of it. For subdivisions on
non-orientable surfaces, we need another motion function,
eFlip, that looks at the same directed edge from the other
side of the surface. See the original article (4) for details.

3.3 The data structure
The Quad-edge data structure is a collection of edge
records connected by pointers that encode the motion
functions. Each edge record e represents the four arcs
— two primal and two dual — associated with the same
undirected edge e of the subdivision. The group comprises
some arc ē (the canonical representative) of e, and its ro-
tated versions ēRotr, for r ∈ 1, 2, 3. Accordingly, the edge
record e is divided into four arc records e[0] through e[3],
where e[r] represents the arc ēRot r. The pair (e, r) is
called the reference of arc ēRotr.

Each arc record e[r] contains two fields, Next and Data.
The former contains the reference to the arc ēRot r ONext

while the latter can be used to hold mesh geometry
data and/or other application-specific information associ-
ated with the arc ēRotr. See figure 2.

Figure 2 shows that each edge record e belongs to four
circular lists, defined by the Next links: two rings around the
connected vertices and two around the separated faces.
Given an arc reference (e, r), the motion functions can be
computed as follows:

[!h]

(e, r)Rot = (e, r + 1)
(e, r)ONext = e[r].Next
(e, r) Sym = (e, r + 2)
(e, r)Rot−1 = (e, r + 3)
(e, r)OPrev = (e[r + 1].Next)Rot

(1)

The basic Quad-edge structure does not have records ex-
plicitly representing vertices or faces. A vertex is implicitily
defined as a ring of arcs, and it is referred by one of its out-
going arcs; and similarly for faces. In many applications,
however, the structure is augmented with vertex and face
records, whose addresses are stored in the Data fields of
primal and dual arc records, respectively.

3.4 Basic topological operators
Another feature of the Quad-edge structure is that con-
struction and modifications of arbitrary meshes can be re-
duced to just two basic topological operators—whereas
most other mesh structures need half a dozen or more.

The MakeEdge operator takes no parameters and returns
the reference e to the canonical arc of newly created edge
record e. The Next fields of e are such that eLNext =
eRNext = e Sym and eONext = eOPrev = e. The record
is thus a complete Quad-edge structure by itself, represent-
ing the simplest valid subdivision of the sphere S

2—with a
single edge e, two vertices eOrg 6= eDest , and a single
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Figure 2: A simple subdivision of the sphere (a) and its
Quad-edge representation (b).

face eLeft = eRight .

The other Quad-edge operator is denoted by Splice(a, b)
and takes two arc references a and b as parameters. If
the vertices aOrg and bOrg are distinct, Splice will com-
bine them into one vertex, by fusing the two arc rings
into a single ring. Otherwise, Splice will break the vertex
aOrg = bOrg into two vertices, by splitting the ring of out-
going arcs into two separate rings. The operator also mod-
ifies the rings of dual arcs around faces aLeft and bLeft in
the same way. See figure 3

↔

Figure 3: The effect of Splice(a, b) when either aOrg =
bOrg or aLeft = bLeft , but not both.

In both cases, Splice breaks the vertex rings just af-
ter the arcs a and b, and the operation amounts to
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l

Figure 4: The effect of Splice(a, b) when aOrg = bOrg

and aLeft = bLeft are both true or both false.

swapping the contents of the Next fields of the corre-
sponding arc records. The face rings are broken just
before aRot and bRot . Note that the Splice oper-
ation is its own inverse, i.e. the command sequence
Splice(a, b); Splice(a, b) leaves the structure unchanged.

Figure 3 illustrates this process for the two simplest cases
where aOrg 6= bOrg and aLeft = bLeft ; or, conversely,
where aOrg = bOrg and aLeft 6= bLeft . In these two
cases, the effect of Splice is to modify the subdivision, but
not the topology of the underlying surface. In the two re-
maining cases—where aOrg 6= bOrg and aLeft 6= bLeft ,
or aOrg = bOrg and aLeft = bLeft—the Splice opera-
tion modifies not only the subdivision but also the topology
of the underlying surface, by creating or removing a handle
from face aLeft to face bLeft , and combining or splitting
the vertices aOrg and bOrg across that handle. See fig-
ure 4.

3.5 Enumerating vertices and edges
The enumeration of all vertices and/or all edges of a subdi-
vision may be performed by a standard breadth-first traver-
sal (2) of the Quad-edge structure:

PROCEDURE Enum(e, VVisit, AVisit)
Q← {e}; eOrg .mark← TRUE;

while Q 6= {} do

e← Dequeue(Q); VVisit(m);
n← eONext Sym;

while n 6= eSym do

AVisit(n);
if not nOrg .mark then

Enqueue(Q,n);
nOrg .mark← TRUE;

n← nDNext;

This algorithm will call VVisit once for every vertex v of
the mesh, giving as argument one of the arcs out of v.
It will also call AVisit(e) once for every primal arc e of

the mesh. The algorithm uses a queue (2) Q of arc refer-
ences, handled through the procedures Enqueue(Q, e) and
Dequeue(Q); and a flag e.Data.mark that tells whether a
node has ever been inserted in the queue.

4 Three-dimensional WFC with the Quad-edge
According to Gjøystdal et al. (3), the main steps in WFC
are: (i) generation of the initial wavefront, (ii) propagation
of the front through one time step, (iii) adjustments of the
ray field’s density, and (iv) detection of arrivals at receivers.
We will assume here that layers are homogeneous, so that
ray paths are straight within each layer.

4.1 Wavefront model
The wavefront is modeled by a mesh of triangles, whose
topology is represented by a Quad-edge structure. The
Data field of a primal arc e points to a sample node s, de-
noted here by eOrg (see section 2.1), whose coordinates
s.c are those of the corresponding mesh vertex.

4.2 Generating the initial wavefront
The process is started with a very small spherical wavefront
of specified mode (S or P) centered at a specified source,
which is assumed to be a single point. This inital wave-
front can be represented by a small number samples, dis-
placed from the source by a small amount along a fixed set
of directions, and connected into a mesh with a fixed topol-
ogy. For instance, one could use 20 samples, placed and
connected like the vertices of an icosahedron (3). We use
points from an m by n spherical coordinate grid, with given
m and n, with the topology of their Delaunay triangulation
(DT), computed as described by Guibas and Stolfi (4).

4.3 Propagating the wavefront
In order to simulate the wavefront propagation over each
time step, it suffices to traverse the whole data struc-
ture, and perform an initial-value ray tracing computation
at every node s. This step is described by the procedure
AdvanceNode(s, h, σ) below, which updates the coordinates
s.c of node s by following the corresponding ray from the
current time t to time t+h, with interactions specified by σ.
PROCEDURE AdvanceNode(s, h, σ)

while TRUE do

p← s.c;
s.c← s.c + hs.v;
(q, α, i)← FirstHit(p, s.c);
if α = +∞ then break;

s.c← q; h← h− αh;
Interact(s, i, σ[s.k]);
s.k← s.k + 1;

The procedure FirstHit is a purely geometric algorithm
that, given the endpoints p and c of a line segment, inter-
sects that segment with the surfaces of all reflectors in the
model, and returns the intersection point q which lies clos-
est to p. It also returns the ratio α = dist(p, q)/ dist(p, c),
and the index i of the corresponding reflector.
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The signature of the desired wavefront is specified by a
vector σ, where σ[k] specifies which reflector should be
involved in its kth interaction event, and which secondary
ray should be followed after that event. Thus, for exam-
ple, σ[3] = 1rP specifies that the third interaction should be
with refletor 1, and the simulator should then follow the re-
flected (r) ray with pressure (P) mode. The Interact pro-
cedure computes the velocity vector the appropriate sec-
ondary ray, using the geometric reflection law for r signa-
tures, and Snell’s law for t signatures.

It often happens that a simulated ray cannot be propagated
past an interaction event; either because the reflector that
was hit is not the one requested by the signature, or be-
cause the reflector and ray parameters are such that the
requested secondary ray does not exist—e.g. due to to-
tal absorption or reflection. In such cases, the the sample
record s is marked as dead. Dead nodes are ignored when
processing or plotting the wavefront, but are retained in the
wavefront model in order to preserve the mesh topology.

4.4 The density control mechanism
Node density control comprises two steps: (a) detect viola-
tions of the uniform density criteria, and (b) ajust the mesh
so as to restore those criteria.

Vinje’s distance criterion (8) consists of an upper bound on
the distance between a sample point and its closest neigh-
bor. Other criteria have been proposed by Vinje (9; 10),
Lambaré (6), Kraaijpoel (5), and others. Our criteria con-
sist of a lower bound dmin and an upper bound dmax on
the discrepancy between adjacent mesh nodes r, s; which
is defined as an appropriate combination of the spatial (Eu-
clidean) distance between the positions r.c, s.c, and the an-
gle between the velocity vectors r.v, s.v.

Thus, we solve the first part of the problem by checking,
for each undirected edge e of the mesh, the discrepancy
between the endpoints r = eOrg and s = eDest . If the
discrepancy exceeds the upper bound dmax, then we split
the edge in two by a new vertex w, and split the faces eLeft

and eRight by two new edges. Conversely, if the discrep-
ancy between r and s is less than dmin, we contract the
edge, merging its endpoints into a new vertex w, and re-
moving the adjacent faces. In either case, the position, ve-
locity, and other properties of w are chosen by interpolation
of those of r and s. These two cases are handled by the
procedures SplitEdge and ContractEdge below:
PROCEDURE SplitEdge(e)

r← eOrg; s← eDest;

w← InterpolateNode(r, s);
b← MakeEdge();
bOrg ← w; bDest ← eDest;

eDest ← w;

bLeft ← eLeft; bRight ← eRight;

bLNext ← eLNext; bRNext ← eRNext;

eLNext ← eRNext ← b;
Connect(bLNext , b);
Connect(eOPrev , eSym);

e

(a)

e b
w

(b)

Figure 5: Increasing the sample density with
SplitEdge(e): (a) before and (b) after the call.

PROCEDURE ContractEdge(e)
r← eOrg; s← eDest;

w ← InterpolateNode(r, s);
a← eONext ONext;

b← eLNext;

DeleteEdge(eONext);
DeleteEdge(eOPrev );
DeleteEdge(e);
Splice(a, b);

e

(a)

w

(b)

Figure 6: Decreasing the sample density with
ContractEdge(e): (a) before and (b) after the call.

The procedures DeleteEdge and Connect are topological
operators defined in terms of MakeEdge and Splice (4).
The call DeleteEdge(e) disconnects the edge e from
the Quad-edge, by performing Splice(e, eOPrev ) and
Splice(eSym, eSym OPrev ). This operation merges the
two faces eLeft and eRight into a four-sided face. The
procedure Connect(a, b) is, to some extent, its inverse: it
creates a new undirected edge e, with MakeEdge, and then
adds it to the structure, connecting the vertices aDest and
bOrg across the face aLeft (assumed equal to bLeft ).

5 Experiments
At present we have implemented just the first two steps of
WFC: generation of the initial wavefront and its propaga-
tion. Figure 7 shows the propagation of a wavefront in a
homogeneous layered medium with one reflector, accord-
ing to the signature 〈P, 1rP〉. This prototype of the simulator
was implemented in MATLAB, and is now being extended
to more general models and converted to the C language.

6 Conclusions
The algorithms and experiments described above show
that the Quad-edge structure simplifies considerably the
implementation of WaveFront Construction method, espe-
cially the sample density control mechanism.
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Figure 7: The reflection of a P-wave on a plain reflector.
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