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Abstract 

The Gaussian beam concept was originally introduced in 
the seismological literature by Russian and by Czech 
researchers in the beginning of the 80's, in order to 
investigate certain limitations of the zero order ray theory, 
up to now the standard method to study the propagation 
of a seismic wavefield in smooth geological models. This 
paper investigates then a possible relationship of this 
concept with the Fresnel volume elements. This 
restriction permits that certain parameters that control the 
half-widths of the beams present an analytical expression, 
based on the knowledge of the Fresnel volume elements, 
common on modeling of seismic wavefield, and that can 
be fully determined by dynamic raytracing (DRT).  

Introduction 

Gaussian beams (GBs) are high-frequency time harmonic 
solutions of the elastodynamic equation concentrated 
close to their central rays (Klimeš, 1984). They were 
introduced in the seismological literature by Popov (1982) 
and Popov and Psencĭk (1978), based on the works of 
several Russian researchers, and later developed by 
Czech researchers on behalf of the “Seismic Waves in 
Complex 3D Structures” project, at Charles University, 
Praha. Later, Červený (1982), Popov et al. (1982), 
Červený and Klimeš (1984), Müller (1984), among others, 
developed the idea behind which synthetic seismograms 
could be obtained by a superposition of GBs as an 
asymptotic approximation of the zero order ray theory. 
This concept had as main characteristic the fact that a 
superposition of beams could overcome some drawbacks 
of the seismic wavefield propagation, such as the 
regularity of the wavefield in singular regions of the 
assumed known velocity model, the consideration of rays 
not traced by raytracing codes in shadow zones or more 
complex geological models, etc. In order to do so, a 
certain integral representation of complex paraxial GBs 
had to be introduced, together with the definition of a 
special weight-function, whose asymptotic determination 
lead to the zero order ray theory solution. In numerical 
terms, Klimeš (1984) shed some light upon the use of this 
weight-function geometrically, by using elements of the 
ray-centred coordinates propagator matrix, which are 
well-known solutions of the DRT system. The final result 
in Klimeš (1984) presented an important numerical 

solution for the weight-function. However, its physical 
significance had not been investigated so far. Since the 
ray-centred matrices are related to the so called Bortfeld 
propagator sub-matrices (Bortfeld, 1989), and these latter 
are related to the calculation of the Fresnel volume 
elements (Schleicher et al., 2004), it became clear to us 
that the numerical solution of Klimeš (1984) had also an 
interpretation in terms of the Fresnel volume elements.  

An important aspect in this respect is the fact that, by 
using the Fresnel volume elements, we are able to assign 
an analytical representation for certain parameters that 
control important features of the GBs, such as its half-
widths. This has important consequences in terms of 
stability. Since the beams are very sensitive to the 
optimal choice of the initial conditions of the (complex) 
DRT system, the analytical expression for the beam 
parameters established in this work, in terms of the 
Fresnel volume elements, guarantee to us that we can 
control these quantities and avoid artifacts when 
modeling the wavefield. In particular, the weight-function 
that we introduce is proportional to the Fresnel zone in 
depth and/or its counterpart, projected towards the 
acquisition surface (Schleicher et al., 1997; Schleicher et 
al., 2004), indicating that the main contribution to a 
certain observation, in the paraxial meaning, are the ones 
belonging to points inside the Fresnel zone.  
In this work we study the properties of construction of 
synthetic seismograms with the GB concept in a different 
manner. We first transform the integration domain of the 
GBs superposition integral into a more suitable domain 
for the description of the problem, i.e., over the acquisition 
surface, where seismic data are gathered, precisely when 
they are restricted to the Fresnel zones of each trace. In 
the following, this transformation leads to asymptotically 
determine the new form of the weight-function and make 
use of the quantities determined during the DRT. Finally, 
we test our modeling operator in one seismological 
example, simulating the propagation of a seismic 
wavefield in the crust-mantle interface.  

The Fresnel volume elements 

In order to demonstrate the formation of the Fresnel 
volume, we shall use the concept of seismic system 
introduced by Bortfeld (1989). We consider then an 
arbitrary number of isotropic, homogeneous or 
inhomogeneous layers, separated by smooth and curved 
interfaces. According to Hubral et al. (1993) and 
Schleicher et al. (1997), the Fresnel zones are cross 
sections of the Fresnel volume (ray tubes), formed by the 
set of intersection points of paraxial rays over a given 
(fictitious or not) surface inside the Earth, during its path 
between a source S and a receiver G, considering that 
the traveltime of each paraxial ray does not differ from the 
traveltime of the central ray, along the same path way, by 
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more than one-half period of the monofrequency wave 
(Figure 1). Mathematically, this has the following formal 
definition (Schleicher et al., 1997) 

2
),(-)(2)(1

TGSG,MMS, ≤ττ+τ .                  (1) 

where τ1 and τ2 are paraxial traveltimes for two ray 
branches, while τ is the traveltime of the central ray and T 
is the period. Point M  is a neighbor point of the specular 
reflection point MR in depth. These points define a 
reflection or a transmission surface ΣF or, more precisely, 
a tangent plane at the same point. Then the Fresnel 
volume is defined as the envelope of all Fresnel zones set 
up along all arbitrary surfaces that intercept a central ray 
along its pathway between S and G. In other words, Eq. 
(1) can be rewritten as (Schleicher et al., 1997) 

TMF.M ≤xHx
rr                              (2) 

where  is the 2 x 2 Fresnel zone 
matrix (Hubral et al., 1993; Schleicher et al., 1997) in 
terms of the 2 x 2 submatrices of the Bortfeld surface-to-
surface propagator matrix (Bortfeld, 1989; Schleicher et 
al., 1997). Here we have also used the paraxial 
(parabolic) approximation of the traveltimes in order to get 
to Eq. (2) (Schleicher et al., 2004).  
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Another important relationship derived from the concept 
of Fresnel zone is the projected Fresnel zone. 
Geometrically, this zone is a region located at the 
acquisition surface and that is formed by the set of points 
that reflected inside the true Fresnel zone over ΣF 
(Schleicher et al., 1997). Its formal definition is given by 

,                                (3) F
T

P ΛHΛH 1−=

where  and ΓSG ΓBΓBΛ 1
1

1
2

−− += j (j = S, G) is the 
configuration matrix (Schleicher et al., 1993).  

Equations (2) and (3) are all that is necessary from the 
Fresnel volume elements to be known in order to relate 
them to GBs. The other relationship is the one involving 
their definition in terms of the (ray centred) DRT sub-
matrices. We shall not present them here. Their 
definitions can be seen in Červený (2001). 

The Gaussian Beam concept 

GBs are bell-shaped time-harmonic solutions of the 
elastodynamic equation, concentrated close to their 
central rays (Klimeš, 1984). They exist in the paraxial 
vicinity of a given ray, accompanying them along its whole 
pathway, whose amplitude are Gaussian decaying with 
respect to the distance from this central ray, and that form 
a continuous and coherent beam along the same 
pathway. They can be described in ray-centred and 
general Cartesian coordinates (Figure 2). We shall also 
consider local Cartesian coordinates (Červený, 2001). Its 
mathematical definition was established in Ferreira and 
Cruz (2003). 
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Figure 2 – A Gaussian beam, the ray-centred
coordinate system (s, n) and the general
cartesian coordinate (x, y) (Hale, 1993). 

 

 

 

The most important features of the GBs are that they are 
complex paraxial rays that are tightly concentrated around 
the central ray (in a bell-shaped manner), and are regular 
along its whole pathway, with non-singular amplitudes 
and no phase shifts. GBs present complex paraxial 
traveltimes, which leads to the definition of a complex 
wavefront curvature matrix, whose imaginary part is 
related to the so called beam half-width. They obey the 
same initial conditions of the real DRT system (e.g., point 
source or initial wavefront), but in a complex way, in order 
to establish a relationship with the half-width. In 
mathematical terms, the half-width is given in 3D by 
(Müller, 1984) 

Figure 1 – Fresnel volume and the seismic
system (Adapted from Schleicher et al.,
2004). 
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where Q1 and Q2 are 2 x 2 sub-matrices of the ray-
centred 4 x 4 propagator matrix Červený (2001) and ω is 
the angular frequency. They are also complete solutions 
of the DRT system (Ferreira and Cruz, 2003). The 2 x 2 
matrices ε1 and ε2 are the real and imaginary components 
of a complex 2 x 2 matrix ε, respectively. They specify 
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special conditions that must be obeyed by the beams, 
either at the source or at the receiver, and that control the 
width of the beams (Müller, 1984). These quantities had 
been studied so far in a pure empirical and numerical 
way, the search of its optimal values only granting more 
stable solutions in the obtaintion of synthetic 
seismograms. The problem with Eq. (4) and with the 
parameters ε1 and ε2 is that they do not constraint the 
beam half-width in a precisely physical way, i.e., their 
numerical values are still insufficient to prevent spurious 
arrivals or non-physical observations in the synthetic 
seismograms. Our purpose is to relate Eq. (4) to Eq. (2) in 
depth and project this values using Eq. (3) towards the 
acquisition surface and find an analytical expression for 
the parameters ε1 and ε2. Unfortunately, this cannot be 
done for both quantities: we must specify some condition 
in which more stable results are gathered. The one that 
had presented more stable results and that is 
recommended by Müller (1984) is the one in which ε1 = 0, 
that is equivalent to grant that the beams at the endpoints 
of the rays present a half-width with the most possible 
minimum value.  

In order to find an analytical expression for the 
parameters ε1 and ε2, besides the empirical ones 
discussed by Müller (1984), we shall consider a situation 
in 2D. This is easily done by considering only the upper 
right elements of each DRT sub-matrix. By expressing 
Eq. (2) as an analogue expression using Eq. (3), the size 
of the projected Fresnel zone in the 2D case can be 
easily estimated as 

P
F Hf
r 1
=                                 (5) 

where f is the dominant frequency of the mono-frequency 
wave and HP is the upper right element of Eq. (3). 
Equating Eq. (5) to Eq. (4), for the case of ε1 = 0, we are 
led to a simple second degree equation in ε2, whose 
solution is given by 
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Eq. (6) tell us that the important beam parameter ε2 is 
now calculated based on a known physical quantity, i.e., 
the projected Fresnel zone value of the wavefield. This 
formally also restricts the value of ε2 to the knowledge of 
the size of the Fresnel zone on the acquisition surface, 
indicating that infinitely broad GBs are no longer possible 
at the endpoints of the rays. Only for comparison reasons, 
if by chance we considered broad projected Fresnel 
zones sizes, i.e., HP → ∞, Eq. (6) yields the same result 
as discussed in Müller (1984). Thus, it means that Eq. (6) 
is a more restrictive and physical condition for the case of 
as narrow beams as possible at the endpoints of the rays. 
The “plus” and “minus” solutions only indicate possible 
choices of constraint when referred to projected Fresnel 
zones. But, overall, physically speaking, Eq. (6) implies 
that the GBs half-widths are restricted to the Fresnel 
volume of the wavefield.  

The modeling integral 

In the following, we shall study a modified version of the 
GBs superposition modeling integral discussed in Ferreira 
and Cruz (2003). Now we consider that the synthetic 
seismograms are obtained, at the geophone position 

)(ξx
rr

G , by the following equation in the frequency domain 
(Ferreira and Cruz, 2004a,b)  
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Here, θG is the emergence angle at the geophone and 
)( Pdet ξQ

r
 is the quantity related to the geometrical 

spreading, while )( PA ξ
r

 is the amplitude, respectively.. In 
this work, we assume that 
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is the weight-function that asymptotically reduces Eq. (7) 
to the zero order ray theory solution (Ferreira and Cruz, 
2004a,b), while the vector  is a subset of the 

coordinate vector 

TP,PP )21( ξξ=ξ
r

ξ
r
, that parameterizes the positions of 

sources and geophones, and which indicates the 
positions of points inside the projected Fresnel zones. 

)),(G( P
RT ξξx

rrr  is the real parabolic paraxial traveltime at the 
geophone G, its position parametrerized by ξ

r
, due to a 
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. Finally, we have that 
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is the Gaussian taper function derived from the imaginary 
part of the traveltime function of the GBs, where Lij are the 
components of the beam half-width matrix [see Eq. (4)]. 
By inserting (8) in (7) and coming back to the time 
domain, after convolving the final equation with the 
source function F(ω), we have 

))(((
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This is our final modeling integral. It considers the 
contributions at geophone G of only all those rays that 
emerge on its projected Fresnel zone on the acquisition 
surface. By its turn, Eq. (8) represents a strong constraint 
for the rays: again, only those rays inside the projected 
Fresnel shall be considered by the summation in Eq. (10).   

Seismological example 

We shall demonstrate the effective use of the Fresnel 
volume elements as constraints in the construction of 
beams, followed by the construction of its synthetic 
seismograms, in a seismological example. This example 
depicts the well known fact that P waves experiment a 
strong increase of 6 Km/s to 8 Km/s at the crust-mantle 

Ninth International Congress of the Brazilian Geophysical Society 



Gaussian beams and Fresnel elements 
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  4
interface, i.e., in the so called Mohorovicic (Moho) 
discontinuity, where some difference in the physical 
properties of the Earth are supposed to exist. Then, we 
have built a velocity profile (Figure 3) in which the crust is 
initially homogeneous, and experiments, at depth 15 Km 
(in this case, the base of the Moho), an approximate 
linear increase in the values of P wave velocities.  

 

 

 

 

 

 

 

 

 

 

 

In Figure 4b we have the ray diagram for a common-shot 
experiment, where a source point is located at the origin 
of a Cartesian coordinate system. This example is based 
on Červený (1985), where we have used 2 Hz as the 
dominant frequency signal. We have considered the 
existence of 40 receivers (seismological stations), each 
one spaced 5 Km from each other, distributed in line over 
a distance of 200 Km. The total depth considered was 40 
Km.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 4a, the traveltime curve presents two divergent 
branches due to the caustic formation around depth 15 
Km.  
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Figure 3 – Velocity profile for the
seismological example 

(b) 

 

 

 

 
Figure 5 – Synthetic seismograms. (a) Ray
theory. (b) Gaussian beam summation.  

 

In Figure 5a we have the synthetic seismogram for the 
seismological experiment, obtained by the zero order ray 
theory solution. We can observe that at the caustic point 
(x = 120 Km) there is a strong amplitude anomaly, exactly 
where the traveltime curve (Figure 4a) diverges in two 
branches. In this example, due to the method itself, no 
observations were included in the shadow zone formed 
before the caustic point. This is not also observed in the 
case of the GBs summation (Figure 5b), but mainly this is 
due to the fact that we have not positioned any geophone 
there. On the other hand, the amplitudes observed in 
Figure 5b for the geophones (stations) located beyond x > 
120 Km also experiment an increase in their values. But 
in some manner this happens in a smooth way, with no 
phase shifts. 

(a) 

(b)
For comparison reasons, in Figure 6 we have depicted 
the values of the Fresnel zone radius, either in depth or 
projected towards the acquisition surface. The green 
triangles represent the values of the Fresnel zone radius 
in all depths seen by the station number 41 (x = 205 Km), 
while the black circles represent the values of the 
projected Fresnel zone for each station, respectively. The 
labels in red (in kilometers values), close to each curve, 
represent the position of each depth point with respect to 
each receiver. It is clear by each curve in green that the 
values of Fresnel zone radius decrease according to the 
depth. Then, the lower values of Fresnel zone radius are 
those referred to points belong to the depth 40 Km. In a 
very symmetrical way, the curves of the projected Fresnel 
zone radius also show a pattern according to the depth 

Figure 4 – Traveltime and ray diagram for the
seismological example. 
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point in consideration. But as we can see in this 
comparison, when referred to each station, each radius 
(in depth or projected) present opposite values. This 
means that when projected towards the acquisition 
surface, the value in depth differ from the value projected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 shows a brief comparison of the number of 
traces influenced by the sizes (radius) of the beam half-
width (black circles) and by the projected Fresnel zone 
radius (green triangles). The upper curve labeled 5 Km 
represents points belonging to this depth, while the lowest 
curve is the one representing depth 40 Km. The 
intermediate curves represent depths spaced 5 Km from 
each other, in a sequence. Since each receiver is spaced 
also 5 Km from each other, the range of some radius 
reaches distances of up to 700 Km, either for the 
projected Fresnel radius and for the beam half-width. The 
most representative values for both quantities are the 
ones belonging to depth 40 Km (less than 100 Km along 
the whole curve), with radius sizes lower than the 
dimensions of the model. Coincidently, these are places 
where the majority of the rays pass, and where they seem 
to be “reflected” from the medium, specially at depths 15 

Km (near the caustic point) and 40 Km, deep inside the 
mantle. But the most important fact here is that these 
values almost coincide along the curves, which means 
that the constraint represented by Eq. (6) is effective and 
the beams at the endpoints of the rays are restricted to 
the projected Fresnel zone of the wavefield.  

 

 

 

 

 

 

 

 

 
Figure 6 – Comparison of values for the Fresnel
zone radius in depth (green triangles) and their
respective values projected towards the
acquisition surface (black circles). 

 

 
Figure 8 – Values of the parameter ε2 for the
seismological example. Only the “plus” solutions
of Eq. (6) are depicted.  

 

 

 

In this respect, we must investigate the role played by 
parameter ε2 [Eq. (6)], under the condition that it grants 
half-widths with the most minimum value at the endpoints 
of the rays. In Figure 8 we have depicted these values for 
the receiver (station) number 41. Once restricted to the 
Fresnel volume, we notice that for inner depths these 
values are more stable and least, indicating an excellent 
control of the parameter. If we compare Figures 7 and 8, 
the beam-widths at the rayends are the least for the 
values of ε2 that are more stable. This can be easily seen 
for the points on the curve of depth 40 Km, which yields 
values of beam-width less than 100 Km wide, along the 
whole curve (less than 20 traces of influence). This fact is 
in agreement with the results studied by Rüger (1993), 
although in the latter case the author only considered the 
parameter ε2 at the source. The behaviour of the results, 
however, are the same and both avoid the effects 
observed in the modeling of the wavefield by the GB 
method.  

Figure 7 – Comparison of the number of traces
influenced by the beam half-width (black circles)
and the projected Fresnel zone radius (green
triangles), both observed at receiver number 41.
The values almost coincide. 

Conclusions 
We have studied a possible link between two quantities 
that have no physical relationship, but are mathematically 
similar. These quantities are the radius of the projected 
Fresnel zone (i.e., part of the Fresnel volume raytracing) 
and the half-width of the Gaussian beams. Gaussian 
beams are complex paraxial rays that are tightly 
concentrated close to their central rays in the meaning of 
Bortfeld’s idea of seismic systems. One critical quantity in 
the description of the GBs is the determination of its half-
width, a frequency dependent quantity that must be as 
minimum as possible along a ray. In the literature, some 
special conditions were studied in order to keep the half-
width as minimum as possible along a given ray, but 
these condition could only be stated at the source and at 
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the rays ends. This meant only and specifically a 
mathematical condition. Nothing up to now was 
introduced in order to constraint the wavefield described 
by the GBs in a physical way, i.e., based on quantities 
that physically exist and are vital to the description of the 
wavefield.  
The Fresnel volume raytracing comes into play in the 
present case due to the description of a set of points over 
(fictitious or not) surfaces along the raypath, called 
Fresnel zones, and which determine a ray tube very 
similar to the half-width of a GB. Of course, one Fresnel 
zone has nothing to do with a GB half-width in a physical 
way, but we consider that it may serve as a strong 
mathematical constraint in the formation of a beam. 
Moreover, being projected from a to-be-imaged-reflector, 
towards the acqusition surface, this information could 
serve as input in the superposition of some several 
beams in order to simulate the wavefield in some given 
receiver and consider only those rays that are really 
important to consider in the superposition of beams. It is 
well known in the literature that a given receiver is also 
influenced by paraxial rays that reflect over the (first) 
Fresnel zone of a given reflector, and that this region over 
the reflector area influences in the resolution of the 
seismic data. In a similar way, in describing the wavefield 
by the superposition of GBs, only some rays in the 
paraxial vicinity of a central ray contribute to the 
observation in a given receiver. The similitude in these 
two ideas lead to the determination of a new weight-
function in the GBs superposition, proportional to the 
value of the projected Fresnel zone, and that formally 
restricts the summation of rays that influences an 
observation at some given geophone. Then, once 
determined the projected Fresnel zone for each 
geophone, a beam parameter can be calculated and 
adjusted in order to keep the beam half-width as minimum 
as possible along the whole raypath and at the rayends. 
We have tested our ideas in a single common-shot 
seismological model, in which we have simulated the well 
known situation of propogation of seismic waves through 
the crust-mantle interface. In the present model, one 
source of primary seismic waves is set and a certain 
number of ray is traced through a constant gradient 
medium simulating the crust-mantle interface. At the 
transition interface, the physical properties of the Earth 
change and make the ray refracts at the base of the 
simulated Moho and form a shadow zone and a divergent 
branch of traveltimes. With the use of the Fresnel volume 
elements and the constraints for the formation of the 
beam at the acquisition surface, we have obtained a 
synthetic seismogram without some artifacts and spurious 
arrivals. Some information was obtained in the shadow 
zone, but with a small amplitude, not recognized at the 
seismic section. The calculated beam parameter showed 
stable results and the half-widths were dimensionally 
proportional to model, yielding stable results.   
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