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Abstract  

Biot’s equations are used for modeling wave propagation 
in 2-D heterogeneous porous media through a second-
order accurate time, fourth-order accurate space, 
staggered-grid finite-difference scheme, based on 
Madariaga-Virieux formulation. For implementing the 
numerical scheme, Biot’s equations are reformulated into 
a first-order system of four equations of motion and four 
constitutive equations, expressed explicitly in particle-
velocity components, stresses and pore-fluid pressure. 
Results from poroelastic and an equivalent Levander’s 
elastic modeling are compared to illustrate Biot’s 
poroelastic effect and then the amount of additional 
information available for seismic and sonic inversion. 

Introduction 

The theory of poroelasticity developed by Biot (1962) is a 
solution to the problem of elastic wave propagation in 
fluid-saturated porous media. It has been used to 
compute the seismic response of fluid-saturated 
reservoirs by numerical implementation of a 2-D finite-
difference scheme (Hassanzadeh, 1991; Zhu and 
McMechan, 1991; Dai et al., 1995). 

Following Levander (1988) for the elastic equations, we 
reformulate Biot’s equations for heterogeneous, 
poroelastic media into a first-order system of four coupled 
equations of motion expressed explicitly in terms of 
velocity components of the solid and of the fluid relative to 
the solid, and four constitutive equations expressed 
explicitly in terms of stress components and pore-fluid 
pressure component. Explicitly expressing stresses and 
pore-fluid pressure, makes relatively simple to implement 
numerically the source function and to satisfy free-surface 
boundary conditions. 

Then, a second-order accurate time, fourth-order 
accurate space, 2-D staggered-grid finite-difference 
scheme, based on Madariaga-Virieux formulation 
(Madariaga, 1976; Virieux, 1984, 1986), is implemented 
to the first-order system of equations in order to simulate 
wave propagation in heterogeneous poroelastic media. In 
specific conditions, the slow wave is observed, in addition 
to the ordinary compressional wave and the shear wave.  

Computations from poroelastic and an equivalent 
Levander’s elastic modeling are performed and 
compared, both in seismic and sonic ranges of 
frequencies. The results show primary and converted 

reflections from fluid and lithologic contacts, illustrating 
the effect of Biot’s poroelasticity, and then the amount of 
additional information available for seismic and sonic 
inversion. 

Poroelastic theory 

Biot’s (1962) theory of poroelasticity describes elastic 
wave propagation in fluid-saturated porous media. It takes 
account of attenuation due to relative motion between a 
viscous pore fluid and the solid matrix. But the attenuation 
mechanism of this theory is not perfect; there are other 
factors that cause acoustic wave attenuation. Mavko and 
Nur (1975; 1979) and O’Connell and Budiansky (1977) 
suggested the squirt flow mechanism, which takes into 
account the attenuation caused by lateral fluid flow. In 
addition, the solid constituent is not completely elastic. 
However, Biot’s theory is useful in petroleum exploration 
as it links the acoustic signals to reservoir parameters, 
such as porosity and permeability (Rosenbaum, 1974), 
and its limitations should be better understood. Besides, 
providing accurate and stable solutions to Biot’s theory, 
represents an important step towards numerical 
computations for the BISQ model, that is, the unified Biot 
and squirt flow mechanism (Dvorkin and Nur, 1993). 

Biot’s main assumptions are: (i) seismic wavelengths are 
large in comparison to the dimensions of the macroscopic 
elementary volume; (ii) particle displacements are small in 
both the solid and the fluid; (iii) the liquid phase is 
continuous (disconnected pores are considered as part of 
the solid); (iv) the solid matrix is elastic, statistically 
isotropic, and homogeneous at microscopic scale; (v) the 
material is fully saturated; (vi) the response is computed 
at frequencies low enough that fluid flow can be described 
by Darcy’s law; and (vii) gravity forces are neglected. 

In Biot theory, wave propagation is described by two 
compressional waves and one shear wave. One kind of 
compressional wave is called the fast wave; it is similar to 
the P-wave in the nonporous elastic solid, and 
corresponds to a movement in which the solid and fluid 
displacements are in phase. The other kind of 
compressional wave is called the slow wave, and 
corresponds to a movement in which the solid and fluid 
displacements are out of phase (Bourbié et al., 1987). 

Wave propagation in a statistically isotropic, 
heterogeneous poroelastic media is described by the 
equations (Biot, 1962): 
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where the subscripts i, j = 1, 2 and 3 correspond to the x, 
y and z directions, respectively;  is the displacement of 
the solid material;  is the displacement of 

the fluid relative to that of the solid, where  is the 

displacement of the pore fluid; 

iu
( iii uvw −= φ )

iv

ijε  are the strain tensor of 

a porous solid; ε  is an invariant of the strain components 
identical to the volumetric strain; k  is the permeability of 
the porous medium; η  is the viscosity of the pore fluid; 

fρ  is the density of the pore fluid; ρ  is the overall 

density of the saturated medium;  is the effective fluid 
density; 

m
µ  and cλ  are the Lamé parameters, µ  being 

the shear modulus of the dry porous frame and cλ  
concerning the saturated medium; and α  and M  are 
parameters related to the bulk moduli. 

In the 2-D case, all the terms related to the y direction 
vanish: 
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The overall density of the saturated medium is calculated 
from 

sf ρφφρρ )1( −+= ,                                                       (7) 

where sρ  is the density of the solid material and φ  is the 
porosity. The effective fluid density is given by 

φρ /fTm = ,                                                                   (8) 

where T  is the tortuosity, 

)/11(1 φ−−= rT ,                                                           (9) 

in which we consider solid spherical grains, 5.0=r  
(Berryman, 1980). One must necessarily have . 0≥T

The bulk modulus of the saturated medium, , is 
defined similarly to the elastic case: 

cK
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3
2
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According to Bourbié et al. (1987), in low porosity 
situations, 

sb KK )1( φ−= ,                                                              (11) 

and Gassmann’s equation (Gassmann, 1951) can be 
reduced to: 

fsc KKK φφ +−= )1( ,                                                    (12) 

where  is the bulk modulus of the dry porous frame, 
 is the bulk modulus of the pore fluid and  is the 

bulk modulus of the solid material.  and  are 

determined directly from the input velocities and densities, 
by considering the situations 

bK

fK sK

sK fK

0=φ  and 1=φ , in equation 
(12), and using the formulae for the P-wave velocity of the 
saturated medium and the S-wave velocity, given 
respectively by 

ρµ /)3/4( +=− ccP KV                                                 (13) 

and 

ρµ /=SV .                                                                 (14) 

The parameters α  and M  are defined as 

sb KK /1−=α ,                                                             (15) 

1]/)(/[ −−+= sf KKM φαφ .                                        (16) 

Formulation and computational aspects 

In order to implement the finite difference scheme, we 
reformulate equations (1) into 
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where  is the velocity of the solid material (first-time 
derivative of ),  is the velocity of the fuid relative to 

that of the solid (first-time derivative of ),  and 
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are the normal stresses, xzτ  is the shear stress, and  

is the pore pressure.  
fp

Equations (17) and (18) are a first-order system of 
differential equations in velocity, stresses and pore 
pressure, which can be solved numerically by direct 
implementation of a finite-difference scheme. Then, 
based on Madariaga-Virieux staggered-grid formulation, 
we derived an explicit finite-difference approximation of 
these equations, which is second-order accurate time, 
fourth-order accurate space, the spatial operator being 
the Levander’s difference formula (Madariaga, 1976; 
Virieux, 1984, 1986; and Levander, 1988). 

Figure 1 shows the spatial distribution of the wave field 
components and poroelastic parameters on the staggered 
finite-difference grid.   
 

 

The source function used in the algorithm is the second 
derivative of Gaussian wavelet, 

))(exp(}1)(2{)( 2323 tftftF ππ −−= ,                            (19) 

where  is the dominant frequency (Cunha, 1997). In this 
work, we assume an explosive point source simply by 
adding the time function values , partitioned linearly 
between solid and fluid, as 

f

)(tF
)()1( tFφ−  and )(tFφ , 

respectively, to the solid normal stress components and 
pore fluid pressure component at the source grid point. 

A nonreflecting boundary condition is incorporated into 
the four edges of the rectangular computational grid. We 
use a simple and robust scheme based on exponential 
reduction of the amplitudes in a strip of nodes along each 
boundary (Cerjan et al., 1985). In this case, the 
exponential factor is applied to the fields of velocities of 
the solid and of the fluid relative to those of the solid, and 
to the fields of stresses and pore pressure.  

To keep grid dispersion down to an acceptable level, the 
following condition is used: 

maxmin 5/ fVh ≤ ,                                                             (20) 

where  is the minimum velocity involved in the 
computations;  is the maximum frequency; and h  is 
the grid spacing, assumed to be the same in both x and z 
directions. For numerical stability, the condition used is 

minV

maxf

max5/ Vht ≤∆ ,                                                               (21) 

where  is the maximum velocity involved; and maxV t∆  is 
the time sample. 

The input parameters for the computations are φ , , k η , 

sρ , fρ , , (P-wave velocity of the solid material), 

and (P-wave velocity of the pore fluid). 
sV sPV −

fPV −

Experiments and results 

As initial tests (not shown here), we compared results 
from our algorithm with the ones published by Zhu and 
McMechan (1991), for a homogeneous model, by using 
the same poroelastic and computational parameters. The 
results were indistinguishable. 

xU , W , m , x fρ , ρ , η , k  

zU , W , m , z fρ , ρ , η , k  

The numerical stability condition, given by equation (21), 
was sufficient until the viscosity to permeability ratio was 

kη ≤ 710+ Pa*s/m2. However, when kη = Pa*s/mn+710 2, 
,...3,2,1=n , we observed that the condition to avoid 

numerical instability becomes, approximately, 

xxτ , zzτ , 
fp , cλ , µ , α , M  

xzτ , µ  

Figure 1 – Staggered grid. U  and W  are evaluated at
;  and W  at [(

x x

],[ zjxi ∆∆ zU z ])2/1(,)2/1 zjxi ∆+∆+ ; ,xxτ

zzτ  and  at [( ; and 
fp ],)2/1 zjxi ∆∆+ xzτ  is evaluated at

, where ∆  and ∆  are the grid
increments; ; ; and  and are
the number of grid points in each direction. 

])2/1(,[ zjxi ∆+∆ x z

xNi ,...,1= zNj ,...,1= xN zN

max5/10 Vht n−≤∆ .                                                          (22) 

Figures 2 to 5 show synthetic seismograms for a 
homogeneous medium, at seismic (Figure 2 and 3) and 
sonic (Figure 4 and 5) frequencies. The poroelastic 
parameters are from Zhu and McMechan (1991, Table 1): 

sρ = 2400 Kg/m3, fρ = 1000 Kg/m3, = 2700 m/s, 

= 1500 m/s, = 1500 m/s, 
sPV −

SV fPV − φ = 20 %, k = 400 md. 

Several simulations are performed, and the effect of 
viscosity on wave propagation in poroelastic media is 
evaluated by changing this parameter in each simulation.  

 

P1 

P2 

Figure 2 – Synthetic poroelastic seismogram of vertical
solid velocity component. Viscosity is set to 10-5cp and
frequency to 10 Hz. P1 is the direct P-wave (P1) and P2
is the slow wave (P2). 
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For results showed in Figures 2 and 3, the source 
frequency is 10 Hz, the time sample is 4*10-4 s, the grid 
spacing is 5 m, the model dimension is 2000x2000 m, 
where receivers are disposed horizontally 200 m deep, 
and the source is at (1000, 600) m. For results showed in 
Figures 4 and 5, the frequency is 10 KHz, grid spacing is 
0.005 m, the model dimension is 2x2 m, the receivers are 
disposed horizontally 0.2 m deep, and the source is at (1, 
0.6) m. In the case of Figure 4, the time sample is 4*10-6 s 
and for Figure 5, it is 4*10-7 s. The nonreflecting boundary 
is applied in a strip width of 40 nodes in each edge.  

We observe that, at 10 Hz, the slow wave is visible when 
the viscosity is, approximately, lower or equal to 10-5cp 
(Figure 2); when the viscosity is 10-4cp (Figure 3), the 
amplitude of the slow wave decreases to a level in which 
it is not visible any more. At 10 KHz, the slow wave is 
visible for viscosities until 10-2cp (Figure 4), but no more 
for 10-1cp (Figure 5).     Figure 3 – Synthetic poroelastic seismogram of vertical

solid velocity component. Viscosity is set to 10-4cp and
frequency to 10 Hz.  The absence of S-wave in the Figures 2 to 5 indicates 

that the explosive source implemented here is sufficiently 
isotropic in the numerical grid. 

Figure 6 represents a heterogeneous model, and its 
layers simulate some real media, such as shale and 
sandstone, saturated by water or gas. The appropriate 
parameters for such media are disposed in Table 1, and 
are based on data from Jones (1986); Dutta (1983); Dutta 
and Oddé (1983); Gregory (1977); and Norris (1989).  

 
 

s r Figure 4 – Synthetic poroelastic seismogram of vertical
solid velocity component. Viscosity is set to 10-2cp and
frequency to 10 KHz.  

Figure 6 – An anticlinal sandstone reservoir model,
where black represents shale, gray represents water-
saturated sand, and white is for the gas-saturated sand.
Parameters are listed in Table 1. The source position is
indicated by “s” and receiver position is indicated by “r”. 

 

In Table 1, the shale porosity is 16 %. However, for this 
kind of rock, most pores are isolated, and one of Biot’s 
assumptions considers such pores as part of solid 
material. Then, for shale, as input porosity in the 
simulations, we use the effective one, effφ = 0.1 %, and 

the input solid density is recalculated from 
Figure 5 – Synthetic poroelastic seismogram of vertical
solid velocity component. Viscosity is set to 10-1cp and
frequency to 10 KHz.  

fisoladasisolada
eff
s ρφρφρ +−= )1( ,                                     (23) 

where  is the isolated porosity, given by 
isolatedφ
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effisolated φφφ −= .                                                           (24) 

Since the effective porosity is the one that contributes for 
the fluid movement, and it is too small, the effect of the 
relative movement between solid and fluid can be 
neglected in this case. Following this, we use an ideal 
value for shale permeability of 1 d, to avoid numerical 
instability. After these assumptions, all other input 
parameters are from Table 1 for modeling in the media 
showed in Figure 6. 

Figure 7 shows results for simulations at seismic (100 Hz) 
and sonic (10 KHz) frequencies, respectively. For 
simulations at seismic frequency (Figure 7a), the time 
sample is 10-5 s, and the grid spacing is 1 m. For those at 
sonic frequency (Figure 7b), the time sample is 2*10-7 s, 
and the grid spacing is 0.01 m. In both cases, the model 
dimensions are 600x600 grid points, the source and 
receiver are located as indicated in Figure 5, and the 
nonreflecting boundary is applied in a strip width of 20 
nodes, only in the left and right edges. Due to the 
geometry of the problem, the top and bottom reflections 
do not affect the results.   
 

 

When comparing results from elastic and poroelastic 
simulations, in Figure 7, we observe that, although there 
is no visible difference between the wave fields at the 
seismic frequency, for the sonic frequency, we observe a 
significant difference between the wave fields.    

The poroelastic modeling is equivalent to the elastic one 
proposed by Levander (1988). For obtaining comparable 
results, we perform Levander’s elastic modeling and use 
Gassmann’s equation for converting poroelastic 
parameters into elastic ones. Obviously, the elastic 
modeling does not take into account the viscosity and 
permeability parameters.  

Discussion and synopsis 

The results above are predicted by Biot’s theory, in which 
the behavior of the poroelastic medium can be 
significantly different for low and higher frequency ranges 
(Biot, 1956a, b; Bourbié et al., 1987; and Gurevich, 1996). 
Such difference is controlled by the parameter 

cffr /= ,                                                                     (25) 

where  corresponds to the source frequency and  is 
the Biot’s characteristic frequency, given by 

f cf

fc kf ρπηφ 2/= .                                                           (26) 

When 1>r , the Biot’s slow wave is relatively low 
attenuated, and it is significant in the overall energy 
balance of the wave field. When 1<<r , the slow wave is 
a diffusive and highy attenuative wave, and all the Biot’s 
poroelasticity effects are small. Bourbié et al. (1987) show 
that the slow wave effects can be neglected if 15.0<r .   

(a)  P (b)E P E

The results showed in the Figure 7 correspond to 
 for the seismic frequency of 100 Hz, and to 4106.1 −×≈r

6.1≈r  for the sonic case (the gas saturated sandstone 
parameters are used for calculating ). That’s the 
reason for the poroelasticity effect not to be visible in the 
seismic range when the poroelastic and elastic results are 
compared (Figure 7a). On the other hand, the effects of 
Biot’s poroelasticity are significant at sonic frequency 
(Figure 7b), and the use of this wave propagation theory 
may provide valuable results in acoustic log inversion.  

cf

Although in most cases at seismic frequencies the Biot’s 
poroelasticity effects are not significant, in some 
situations, such as highly heterogeneous media, the 
cumulative effect may conduce to noticeable differences 
(Hassanzadeh, 1991; Norris, 1993; and Gurevich and 
Lopatnikov, 1995).    
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Table 1 – Poroelastic parameters for the model showed in Figure 6. 

 Shale/water Sand/water Sand/gas 
P-wave velocity of solid 4 790 m/s 5 450 m/s 5 450 m/s 
S-wave velocity 2 520 m/s 3 250 m/s 3 250 m/s 
P-wave velocity of fluid 1 500 m/s 1 500 m/s 630 m/s 
Density of solid 2 680 Kg/m3 2 630 Kg/m3 2 630 Kg/m3

Density of fluid 1 000 Kg/m3 1 000 Kg/m3 140 Kg/m3

Porosity 16 % 25 % 25 % 
Permeability 0.0014 md 1 d 1 d 
Viscosity of fluid 1 cp 1 cp 0.022 cp 
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