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Abstract

We present an organized and didactic tutorial on the formu-
lation and derivation of the generalized quadratic normal
moveouts in isotropic media. General 2D/3D expressions,
with the inclusion of topographic as well as inhomogeneous
velocities are reviewed and discussed.

Introduction

Traveltime expressions that are able to well approximate re-
flection events and also convey useful information of such
events have always been of key interest in seismic data
processing. Of particular importance are the moveouts
of rays around the ZO reflection ray. The most familiar
of such moveouts, the Normal Moveout (NMO), considers,
in its two-dimensional version, a common midpoint (CMP)
gather of sources and receivers along a horizontal seis-
mic line. The reflection traveltimes along offset rays not far
from the zero-offset (ZO) ray at the CMP are approximated
by the one-parameter formula (Dix, 1955)

T (h) =
q

T 2

0
+ C h2 . (1)

In the above equation, T is the traveltime from the source
to the reflector and back to the receiver, T0 is the ZO trav-
eltime at the CMP, h is the half-offset between shot and
receiver. Finally,

C = 4/V 2

NMO , (2)

where VNMO is the NMO-velocity, is the single parameter
that is to be inverted from the CMP data. Note that the
square of the NMO equation (1) can readily be seen as a
second-order Taylor expansion with respect to half-offset.

Under the same conditions as above, a more accurate
equation than the NMO equation (1) is the two-parameter
Shifted Hyperbola formula (De Bazilaire, 1988; Castle,
1994)

T (h) = T0(1 − A) +
p

(A T0)2 + B h2 . (3)

The two parameters A and B,that are to be inverted from
the CMP data, bear a relationship the previous single
NMO-parameter C, namely

C = B/A. (4)

Also observe that the Shifted Hyperbola equation (3) re-
duces to the NMO equation (1) if we take A = 1.

In the last years, more general moveout formulas have
been developed, which are not restricted to the CMP con-
figuration and, moreover, take into account a possibly irreg-
ular topography at the measurement surface. The point of
departure for some of such formulas is to apply a second-
order Taylor approximation to the traveltime with respect
to the distances of source and receiver from the ZO point.
The procedure leads to the so-called parabolic or hyper-
bolic traveltime moveout, as used, for example in the CRS
method. In the following, the general second-order Tay-
lor approximations of the traveltime around the ZO ray
will be simply called quadratic normal moveouts. After
Hubral (1983), the concepts of the Normal (N) and Normal-
Incident-Point (NIP) waves were incorporated in the Taylor
formulation of the reflection moveouts in the vicinity of the
ZO ray. The 2D ZO Common Reflection Surface (CRS)
method uses the hyperbolic normal moveout (see, e.g.,
Müller et al., 1998)

T (x, h) =
p

[T0 + A x]2 + B x2 + C h2 , (5)

where x and h denote the midpoint (relative to the cen-
tral point) and half-offset coordinates of the source and re-
ceiver pair, and T0 is the ZO traveltime at the central point.

The parameters A, B and C are related to physical quanti-
ties referred to as the CRS parameters,

A =
2 sin β

v0

, B =
2T0 cos2 β

v0

KN , C =
2T0 cos2 β

v0

KNIP ,

(6)
where β is the emergence angle of the ZO ray with re-
spect to the surface normal, and KN and KNIP are the
curvatures of the N- and NIP-waves, respectively. All these
quantities evaluated at the central point. Finally, v0 is the
medium velocity at the central point. Observe that for-
mula (5) reduces to the normal-moveout (1) in the case of
a CMP gather, i.e., x = 0. Moreover, the relation between
VNMO and the CRS parameters is clear,

V 2

NMO =
4

C
=

2 v0

T0 cos2 β KNIP
. (7)

Despite their widespread use in many investigations and
practical applications, especially in the framework of the
ZO CRS method, it is our feeling that the ZO parabolic and
hyperbolic moveouts (namely, quadratic normal moveouts)
in 2D and 3D still lack a simple and direct exposition and
derivation, for example along the lines of Ursin (1982), that
accounts for the following generalizations: (a) Considera-
tion of a velocity gradient at the ZO point; (b) full account of
topographic effects and (c) explicit dependence on the ZO
CRS parameters. This is exactly the purpose of this paper.
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2D Taylor Reflection Moveouts Around the ZO
Ray

We now consider, still in the 2D situation, reflected rays
from arbitrary source and receiver locations around a fixed
ZO reference ray. Assuming a fixed global Cartesian coor-
dinate system, we consider, without loss of generality, that
the (fixed) ZO ray departs and emerges from the origin of
that system. To make full use of the symmetries that are
attached to the ZO ray, we adopt, as usual done in the liter-
ature, midpoint and half-offset coordinates m = (mx, mz)
and h = (hx, hz), to locate a source and receiver pair
around the ZO ray. In other words if rs = (xs, zs) and
rg = (xg, zg) denote the global Cartesian coordinates of
the source and receiver, respectively, the corresponding
midpoint and half-offset coordinates, (m,h), satisfy the re-
lations m = (rg + rs)/2 and h = (rg − rs)/2.

The parabolic moveout (namely, the second-order Taylor
approximation of the traveltime), now denoted by T (m,h),
around the ZO traveltime, T0 = T (0,0) reads

T (m,h) = T0+∇T (0) (m,h)T +
1

2
(m,h) ∇2T (0) (m,h)T ,

(8)

where ∇T (0) =

„

∂T

∂m
,
∂T

∂h

«

and

∇2T (0) =

2

6

6

6

4

∂2T

∂m2

∂2T

∂m∂h

∂2T

∂h∂m

∂2T

∂h2

3

7

7

7

5

, (9)

all the above partial derivatives being evaluated at m =
h = 0.

We now observe the fundamental fact that, due to reci-
procity, we have, for any coordinate pair (m,h),

T (m,−h) = T (m,h) , (10)

namely, the traveltime is an odd function of half-offset. As
a consequence, in the present ZO situation,

∂T

∂h
=

∂2T

∂m∂h
=

∂2T

∂h∂m
= 0, (11)

which allows for the appealing traveltime decoupling, char-
acteristic of the ZO situation,

T (m,h) = T (m,0) + T (0,h) − T0. (12)

It is easy to recognize that the traveltimes T (m,0) and
T (0,h) have obvious meanings, namely as the ZO move-
out, TZO(m), at midpoint m and as the CMP moveout,
TCMP (h), at half-offset h with respect to the midpoint at
the origin. Under the above notation, the parabolic move-
out (12) can be recast as

T (m,h) = TZO(m) + TCMP (h) − T0. (13)

The next step is to find suitable independent expressions
for the ZO and CMP moveouts. In the following sections,
it will be shown that these expressions can be easily de-
rived from traveltimes formulas around emerging wave-
fronts, upon the introduction of the N- and NIP-waves
(Hubral, 1983).

2D Traveltimes Around an Emerging Wavefront in
Local Coordinates

We consider a fixed (central) ray together with its associ-
ated wavefront that emerges at a given point O. Our task
is to obtain a Taylor-type approximation of the traveltimes
in the vicinity of the reference point O as the wavefront pro-
gresses away from it. A local Cartesian coordinate system
(ξ, η) has it origin at the emergence point O and ξ-axis ly-
ing along the tangent to the wavefront. See Figure 1. The
η-axis is chosen to point in the direction of wavefront prop-
agation.

o x

z

ξ

η

β

Wavefront

Paraxial Ray

Figure 1: Local, (ξ, η), and global, (x, z), cartesian coordi-
nate system.

The second-order Taylor approximation for the traveltime,
t(ρ), at the point ρ = (ξ, η)T in the vicinity of the origin
reads

t(ρ) = t0 + ∇t(0)T ρ +
1

2
ρT∇2t(0)ρ, (14)

where t0 = t(0) and ∇t, ∇2t are, respectively, the gradient
and the Hessian of traveltime function t. Using the eikonal
equation

|∇t|2 = t2ξ + t2η = 1/v2 , (15)

and since our choice of the coordinate system, namely the
ξ-axis being tangent to the wavefront at the origin and the
η-axis pointing in the direction of wavefront propagation,
we readily find tξ(0) = 0 and tη(0) = 1/v0 ≡ 1/v(0). To
obtain the elements of the Hessian matrix, we differentiate
the eikonal equation (15) with respect to ξ and η and set
ρ = 0, obtaining tηξ(0) = tξη(0) = − v0

ξ/v2

0 and tηη(0) =
− v0

η/v2

0 , with the notation v0

ξ = vξ(0) and v0

η = vη(0).

We now show that the remaining element, tξξ(0), has a
simple relation to the curvature, K0, of the wavefront at
the origin. To see this, we make use of the fact that the
wavefront, being tangent to the ξ-coordinate axis at the ori-
gin, admits, near that point the convenient parameteriza-
tion η = η(ξ), for which, the wavefront curvature can be
expressed as

K(ξ) = −
η′′(ξ)

[1 + (η′(ξ))2]3/2
. (16)
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The reason of the minus signal in the above equation is that
we adopt the usual convention of a positive curvature for a
concave wavefront in the direction of propagation. Setting
ξ = 0 in equation (16) yields K0 = K(0) = − η′′(0). As a
next step, we use the identity

t(ξ, η(ξ)) ≡ t0 , (17)

that is valid for all points (ξ, η(ξ)) at the wavefront where the
above parameterization holds. Differentiating both sides of
equation (17) twice with respect to ξ and setting ξ = 0
yields the well-known result tξξ(0) = −ηξξ/v0 = K0/v0.

Substituting the above results into equation (14), we obtain
the second-order Taylor or parabolic traveltime,

t(ξ, η) = t0 +
η

v0

+
K0

2v0

ξ2 +
1

2
ρT

Eρ , (18)

where

E = −
1

v2

0

»

0 v0

ξ

v0

ξ v0

η

–

. (19)

The last term of the above equation, that accounts for the
contribution due to the velocity gradient at the emergence
point of the central ray, will be referred as the inhomogene-
ity term. We finally observe that, for observation points on
the ξ-axis (η = 0), we obtain the simplest formula

t(ξ, 0) = t0 +
K0

2v0

ξ2, (20)

which does not depend on the velocity gradients.

ZO Case: The N-Wave

The ZO moveout, TZO(m), can be readily interpreted to
belong to a wavefront that coincides with the reflector at
zero time and progresses towards the measurement sur-
face with half the medium velocity. As explained Hubral
(1983), this hypothetical, that realizes the hypothetical ex-
ploding reflector experiment, is the N-wave. As a con-
sequence, the sought for ZO traveltime, TZO(m), can be
readily obtained from equation (18) by just considering
twice that traveltime setting ρ = µ, the local coordinate
of the midpoint global coordinate m, and K0 = KN , the
wavefront curvature of the N-wave at 0. We find

TZO(m) = 2 t(µ) = T0 +
2

v0

µ2 +
KN

v0

µ2

1 + µT
Eµ , (21)

where we have considered the fact that T0 = 2t0.

CMP Case: The NIP-Wave

The CMP moveout, TCMP (h) can be also be obtained
upon the introduction of NIP-wave and also taking into ac-
count the NIP-wave theorem of Hubral (1983). The NIP-
wave theorem states that, up to the second-order Taylor
approximation, the CMP traveltime equals the diffraction
traveltime at NIP. As a consequence, the CMP traveltime
can be considered as the traveltime sum along the rays
that connect the source, at −h and the receiver, at h to a
”diffraction point” at NIP. Both these traveltimes can be ac-
counted for using the theory of the previous section, upon
the consideration of the NIP-wave, that starts at time zero

as a point source at NIP and progresses to the measure-
ment surface at half the velocity of the medium. Setting
K0 = KNIP in equation (18) and considering ρ = ±δ, the
local coordinates of the half-offset global coordinates ±h,
we readily find

TCMP (h) = t(−δ) + t(δ) = T0 +
KNIP

v0

δ2

1 + δT
E δ , (22)

where, again, we have considered the relation T0 = 2t0.

General Case

Putting together equations (13), (21) and (22), we arrive at
the parabolic approximation for the reflection traveltime in
local coordinates, namely

T (m,h) = T0+
2

v0

µ2+
KN

v0

µ2

1+
KNIP

v0

δ2

1+µT
Eµ+δT

E δ .

(23)
The corresponding hyperbolic approximation, that is, the
second-order Taylor formula for T 2, can be readily obtained
by squaring both sides of the parabolic traveltime (23) and
discarding the higher-order terms. We find,

T 2(m,h) =

»

T0 +
2

v0

µ2

–2

+ 2 T0 [µT
E µ + δT

E δ]

+
2 T0 KN

v0

µ2

1 +
2 T0 KNIP

v0

δ2

1 . (24)

2D Traveltimes Around an Emerging Wavefront in
Global Coordinates

The previously considered local Cartesian (ξ, η)-system
will now be changed to a global Cartesian (x, z)-system.
This is certainly the real situation, since the wavefront is,
in principle, not known. That unknown angle will become
a parameter in the new formula. The relationship between
the new (global) and old (local) Cartesian coordinate sys-
tems is simply a rotation about the emergence angle, β, of
the normal to the wavefront at O with respect to the new z-
axis (see Figure 1). Setting r = (x, z)T , the corresponding
coordinate transformation is given, in matrix form, as

r = Gρ, with G =

»

cos β − sin β
sin β cos β

–

, (25)

from which, by the orthogonality property, G
−1 = G

T , of
the matrix G, and an application of the chain rule of deriva-
tives, we find

ρ = G
T
r, and

»

vξ

vη

–

= G
T

»

vx

vz

–

. (26)

Moreover, µ = G
T
m and δ = G

T
h. Substituting the

above relations into equation (24), we arrive at the hyper-
bolic moveout expression in global coordinates

T 2(m,h) =

»

T0 +
2

v0

(mx sin β + mz cos β)

–2

+
2 T0 KN

v0

[mx cos β − mz sin β]2

+
2 T0 KNIP

v0

[hx cos β − hz sin β]2

+ 2 T0 [mT
B m + h

T
B h] , (27)
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where the matrix B that appears in the inhomogeneity term
is given by

B = G E G
T = −

1

v2

0

»

a c
c b

–

, (28)

with

a = sin β [v0

x (1 + cos2 β) − v0

z cos β sin β] ,

b = cos β [v0

z (1 + sin2 β) − v0

x cos β sin β] ,

c = v0

x cos3 β + v0

z sin3 β . (29)

It is important to note that the matrix E has been also tran-
formed into global coordinates using relations (26).

2D CRS Traveltime

It is interesting to consider the particular case of source and
receiver at the surface z = 0 and a locally constant velocity
at the origin. This is obtained by just setting in equation
(27), v0

x = v0

z = 0, as well as m = (m, 0) and h = (h, 0),
leading to

T 2(m, h) =

»

T0 +
2 sin β

v0

m

–

2

+
2 T0 cos2 β

v0

[KN m2 + KNIP h2] . (30)

Equation (30) is the one that is commonly used for stacking
and parameter estimations in the CRS method. As already
mentioned, we readily observe that, in the CMP configura-
tion, m = 0, the CRS formula (30) reduces to Dix’s NMO
moveout,

T 2(h) = T 2

0 + 4 h2/V 2

NMO , (31)

where V 2

NMO = 2 v0/(T0 KNIP cos2 β).

REMARK: For inversion purposes, the general traveltime
formula (27) can, in principle, be used as a parametric sur-
face for stacking and inversion. In this case, we have six
attributes to be determined: the emergence angle β, the
wavefront curvatures KN and KNIP , and the gradient ve-
locity parameters a, b and c. If we consider, as done usually
by the CRS method, a locally-constant velocity, i.e., B = 0,
the number of parameters reduces to three.

Extension to the 3D Situation

The previous analysis can be easily extended to the three-
dimensional case. In the same way as before, we start
the analysis with the consideration of traveltimes around a
given ray together and its wavefront that emerge at point O
at the measurement surface.

Local Coordinates

The local (ξ, γ, η)-Cartesian system in which the (ξ, γ)-
plane is tangent to the wavefront at the origin and the η-axis
points to the propagation direction is now considered. To
facilitate the natural comparison with the previous 2D case,
we now consider ρ = (ξ, γ, η)T . The second-order Taylor
expansion of traveltime in 3D has the same form of its 2D
counterpart of equation (14), namely

t(ρ) = t0 + ∇t(0)T ρ +
1

2
ρT∇2t(0)ρ, (32)

where now, the gradient has three components and the
Hessian matrix nine.

The isotropic eikonal equation, also valid for any point
around the wavefront, can be written as

|∇t|2 = t2ξ + t2γ + t2η = 1/v2 , (33)

where v is the velocity field. Therefore, in analogy to the
previous 2D case, we have, from the chosen coordinate
system, tξ(0) = tγ(0) = 0 and tη(0) = 1/v0. In analogy
to the 2D case, differentiation of the eikonal equation (33)
with respect to ξ1 and ξ2 and evaluation at the origin yields,
tηξ(0) = tξη(0) = − v0

ξ/v2

0 , tηγ(0) = tγη(0) = − v0

γ/v2

0

and tηη(0) = − v0

η/v2

0 . Still following the 2D case, we
parameterize the wavefront in the vicinity of the origin as
η = η(ξ, γ), for which the curvature matrix at the origin
point is given by

K
0 = K(0) = −

»

η0

ξξ η0

ξγ

η0

γξ η0

γγ

–

. (34)

Observe that the same signal convention for the wavefront
curvature (positive for concave in the propagation direction)
have been adopted. Upon twice partial differentiation of the
wavefront identity

t(ξ, γ, η(ξ, γ)) ≡ t0, (35)

with respect to ξ and γ, we can relate the upper left 2 ×
2 submatrix of the traveltime Hessian at the origin by the
formula

tpq(0) = −
1

v0

η0

pq =
1

v0

K0

pq. (36)

with p, q = ξ, γ. Putting together all the above results, we
arrive at

t(ξ, γ, η) = t0 +
η

v0

+
1

2 v0

(ξ, γ)K0(ξ, γ)T +
1

2
ρT

Eρ , (37)

where E is given in the 3D case by

E = −
1

v2

0

2

4

0 0 v0

ξ

0 0 v0

γ

v0

ξ v0

γ v0

η

3

5 . (38)

Global Coordinates

Still parallel to the 2D case, we now change from the local
Cartesian (ξ, γ, η)-system to a global Cartesian (x, y, z)-
global coordinate system. The new system is obtained by
a cascaded rotation of an angle β that transforms the η-
axis into the z-axis followed by a rotation of angle α that
takes the (transformed) ξ-axis into the x-axis. Setting r =
(x, y, z)T , the transformation can be given in matrix form as

r = Gρ, G =

2

4

cos α cos β sin α cos α sin β
− sin α cos β cos α − sin α sin β

− sin β 0 cos β

3

5 ,

(39)
where the matrix G is a product of two matrix components

G =

2

4

cos α sin α 0
− sin α cos α 0

0 0 1

3

5

2

4

cos β 0 sin β
0 1 0

− sin β 0 cos β

3

5 .

(40)
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From right to left, the first matrix represents a rotation of
angle β around the γ axis until the η-axis and z-axis co-
incide and the second matrix is a further rotation of angle
α around the z-axis. After these two rotations, the system
(ξ, γ, η) coincides with the system (x, y, z).

Substituting equation (39) into equation (37), we obtain, af-
ter some linear algebra, the 3D traveltime in global coordi-
nates

t(x, y, z) = t0 +
1

v0

[x cos α sin β − y sin α sin β + z cos β]

+
K11

2 v0

[x cos α cos β − y sin α cos β − z sin β]2

+
K12

v0

[x cos α cos β − y sin α cos β − z sin β]

[x sin α + y cos α]

+
K22

2 v0

[x sin α + y cos α]2 +
1

2
r

T
Br , (41)

where,

B = G E G
T = −

1

v2

0

2

4

a d c
d e f
c f b

3

5 , (42)

with

a = cos α sin β [v0

x (2 − cos2 α sin2 β) +

v0

y cos α sin α sin2 β − v0

z cos α sin β cos β],

b = cos β [−v0

x cos α sin β cos β +

v0

y sin α sin β cos β + v0

z (2 − cos2 β)],

c = v0

x cos β(1 − cos2 α sin2 β) +

v0

y sin α cos α sin2 β cos β + v0

z cos α sin3 β,

d = −v0

x sin α sin β(1 − cos2 α sin2 β) +

v0

y cos α sin β(1 − sin2 α sin2 β) +

v0

z sin α cos α sin2 β cos β,

e = sin α sin β [−v0

x sin α cos α sin2 β −

v0

y(2 − sin2 α sin2 β) − v0

z sin α sin β cos β],

f = v0

x sin α cos α sin2 β cos β +

v0

y cos β(1 − sin2 α sin2 β) − v0

z sin α sin3 β .(43)

As in the 2-D case, for a locally constant velocity at the
origin, B = 0 and then, the last term of equation (41) van-
ishes. Moreover, if α = 0, formula (41) reduces to formula
(27) in the xz-plane (y = 0).

Reflection Traveltime

The same analysis for 2D case can be now applied for the
3-D case. For a general source and receiver pair, (rs, rg),
in 3D space around the the origin, we consider the 3D
midpoint and half-offset coordinates m = (mx, my, mz) =
(rg + rs)/2 and h = (hx, hy, hz) = (rg − rs)/2. The reflec-
tion traveltime by T (m,h) can be readily obtained by ap-
plying equation (41) conveniently to approximate the trav-
eltimes T (m,0) = 2 t(m) and T (0,h) = t(−h) + t(h).
We then find the 3D parabolic moveout and, after squar-
ing, the hyperbolic traveltime. For simplicity, we only write
the hyperbolic one,

T 2(m,h) =
»

T0 +
2

v0

[mx cos α sin β − my sin α sin β + mz cos β]

–

2

+
2 T0 KN

11

v0

[mx cos α cos β − my sin α cos β − mz sin β]2

+
4 T0 KN

12

v0

[mx cos α cos β − my sin α cos β − mz sin β]

[mx sin α + my cos α]

+
2 T0 KN

22

v0

[mx sin α + my cos α]2

+
2 T0 KNIP

11

v0

[hx cos α cos β − hy sin α cos β − hz sin β]2

+
4 T0 KNIP

12

v0

[hx cos α cos β − hy sin α cos β − hz sin β]

[hx sin α + hy cos α]

+
2 T0 KNIP

22

v0

[hx sin α + hy cos α]2

+2 T0 [m B m
T + h B h

T ] . (44)

where T0 = T (0,0) = 2 t(0), and B is given by equa-
tions (42) and (43).

REMARK: The traveltime formula (44) can also be used as
a parametric surface for inversion purposes. The number
of attributes now has been increased to eleven: two emer-
gence angles α and β, six wavefront curvatures (three for
K

N and three for K
NIP , and the three components of the

velocity gradient. As before, the number of parameters is
reduced for locally-constant velocity (that is, when the ve-
locity gradient is negligible). In this case, the number of
parameters to be inverted reduces to eight.

Conclusions

Taylor-type moveouts, especially the second-order
parabolic and hyperbolic are routinely used for stacking
and inversion purposes in the processing of seismic data.
Of special relevance are the traveltimes around the ZO
ray, simply called here quadratic normal moveouts, for
which a number of useful symmetries and simplifications
are valid. In this paper we have provided an organized
presentation, discussion and derivation of the quadratic
normal moveouts in isotropic media, using the simplest
possible mathematical framework.

In this sense, we have followed the appealing approach of
Ursin (1982) with the inclusion of the generalizations: (a)
Consideration of a velocity gradient at the ZO point; (b) full
account of topographic effects and (c) explicit dependence
on the ZO CRS parameters.
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