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Abstract 

A nonlinear model of three-wave interactions and its 
temporal evolution is studied. First, we revise the 
techniques used to obtain the model. Starting from the 
MHD equations, we found an electrostatic expression for 
the Zakharov equations, which in the static approximation 
yield to the Nonlinear Schrödinger equation. The model is 
finally obtained using a three traveling wave truncation 
consisting in one linearly unstable pump wave and two 
linearly damped daughter waves. Then we proceed with 
the nonlinear dynamics analysis by constructing a 
bifurcation diagram, where we found a period-3 window. 
Examples of intermittency driven by temporal chaos 
present in the time series are shown. Some reviews of in-
situ experiments and observations related to wave-wave 
interactions, and the relevance of the studied model are 
discussed. 

Introduction 

Observational evidence of wave-wave interactions have 
been reported in a number of in-situ experiments. For 
example, Boehm et al. (1990) detected a correlation of 
Langmuir, whistler and Alfvén waves in two rocket 
experiments in the auroral ionosphere over Alaska and 
Greenland. Gurnett et al. (1993) obtained observational 
evidence of three-wave interactions involving pump and 
daughter Langmuir waves and daughter ion-acoustic 
waves from wideband plasma measurements on the 
Galileo spacecraft, and the detection of type-III radio burst 
from a solar flare event. Stasiewicz et al. (1996) found 
evidence of interactions between Langmuir and lower-
hybrid waves that are consistent with parametric decay of 
beam-induced Langmuir waves, as well as scattering of 
Langmuir waves on preexisting lower-hybrid waves, in 
observations from the Freja satellite. McAddams et al. 
(1999) reported the observation of high frequency 
emissions in the auroral ionosphere, and proposed that 
changes in the plasma density would induce the decay of 
Langmuir waves into a whistler mode wave, and the 
generation of the emissions observed. Recently, Deng et 
al. (2004) reported the crossing of the Geotail satellite 
with an active reconnection diffusion region in the Earth’s 
magnetotail, where tailward electron beams aligned with 
the magnetic field and directed away from the X 
reconnection point excite Langmuir waves which were 

detected simultaneously with fluctuations of the magnetic 
field. 

Over the years, a number of theoretical models of 
nonlinear wave-wave interactions had been proposed. 
Russell and Ott (1981) derived a system of nonlinear 
ordinary differential equations (ODEs) from a truncation of 
the Nonlinear Schrödinger (NLS) equation with linear 
growth rate and damping into three waves. Later, Gosh 
and Papadopoulos (1987) found the same set of ODEs 
deriving it from the derivative nonlinear Schrödinger 
(DNLS) equation, which is a version of the NLS equation 
with a derivative in the nonlinear term. Chian and Abalde 
(1997) studied the decay of a Langmuir pump wave into 
electromagnetic, Langmuir and ion-acoustic waves via 
hybrid stimulated modulational instability. Starting from 
the Zakharov equations, which describe the coupling of 
Langmuir, high-frequency electromagnetic and low-
frequency ion-acoustic waves, and using a Fourier 
analysis they found coupled mode equations for the 
processes L0 → T+ + L- + S, L0 → T-  + L+ + S for the 
linear theory, and L0 ↔ T+ + L- + S, L0 ↔ T-  + L+ + S for 
the nonlinear theory. 

In this paper we extend the work of Russell and Ott 
(1981) by numerical simulations of their system of ODEs. 
First, we present an overview of the derivation of the 
nonlinear (cubic) coupled set of ODEs. Then, in the next 
section we proceed to analyze its temporal dynamics by 
constructing a bifurcation diagram, choosing the 
magnitude of the wave growth/damping rate as the 
control parameter, and selecting a region of interest 
where a periodic window is created from the result of a 
saddle-node bifurcation, and is destroyed by an interior 
crisis. We demonstrate the occurrence of two types of 
intermittency in the time series obtained from the 
numerical simulations, and characterize them by means 
of power spectra. This work can improve our 
understanding on the intermittency phenomenon, which is 
frequently found in observational time series in active 
experiments in space plasmas. 

Model equations 

Starting from the continuity, the two-fluids and Maxwell 
equations: 
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, and considering that the physical variables have two 
time-scales (i. e. high frequency fields oscillating near the 
electron plasma frequency, and low frequency fields 
oscillating below the ion cyclotron frequency) we have the 
following expressions for electronic density, ion density, 
velocity, current and electric field: 

 
, where the subscript h stands for high-frequency scale, l 
for low-frequency scale, and 0 represent the unperturbed 
condition for the corresponding variable. 

Introducing the above time scales into equations (1) – (6) 
we obtain the Zakharov equations: 

 
which describe the nonlinear interaction between high 
frequency Langmuir waves and low frequency ion-
acoustic waves, considering electrostatic waves only (i. e. 
longitudinal waves). 

Now considering a collection of linear Langmuir waves in 
one spatial dimension whose electric field can be written 
as: 

 
and defining the following dimensionless variables 

 
so the following differential operators are defined as: 

 
, and also defining dimensionless variables for the electric 
field and density: 

 
the set of equations (7) – (8) becomes 

 

 
Considering a static approximation in equation (13) we 
get ∂n/∂τ = 0, then the first term on the left of (13) 
vanishes. Integrating twice and setting the constants of 
integration equal to zero yield (Nicholson, 1983): 

 
, so that (12) becomes 

 
which is called the nonlinear Schrödinger equation 
because it resembles the quantum mechanical 
Schrödinger equation. This is the starting point for Russell 
and Ott (1981), where a term representing linear wave 
growth/damping is included: 

 

, and the term  denoting the spatial average of . 
Equation (15) is then approximated to a solution 
consisting of three traveling waves: 

 
where the resonant condition 2k0 = k1 + k2, the linear 
dispersion ωσ = kσ

2 (σ = 0, 1, 2) and the phase difference 
ω1, 2 - ω0 = δ1, 2 are assumed. 

Introducing (16) in (15), and taking the k0, 1, 2 components 
we obtain the following set of complex ODEs: 

 

where the dot denotes temporal differentiation, and δ = (δ1 
+ δ2)/2. This set of equations can be rewritten using the 
representation E0,1,2 = a0,1,2 (t) exp(iψ0,1,2 (t)) (where a e ψ 
are real amplitude and phase, respectively) to a new set 
of four real equations: 

 

where θ(t) = 2ψ0 - ψ1 - ψ2 - 2δt, γ0 = -γ(k0), γ1, 2 = γ(k1, 2). 
Following Russell and Ott (1981), we normalize the 
system so that γ0 = 1, and assume that γ2 = γ1= γ (e. g.  
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Figure 1 - Bifurcation diagram for a0 as a function of the 
growth/damping rateν. The arrow denotes the periodic 
window of interest. 

consider Landau damping of the sidebands in the case of 
an even electron velocity distribution function) and the 
amplitudes a1 = a2. In this case the above four real 
equations are reduced to three: 

 
Note that the choice of signs for γ0, 1, 2  indicates that wave 
0 (i. e. the pump wave) is linearly unstable and its decay 
wave products are linearly damped. 

Nonlinear analysis 

The dynamics of the system (25) – (27) can be studied 
with the aid of a bifurcation diagram. Following previous 
notations from our group, we made γ = ν  and set it as the 
control parameter, fixing δ = -6 arbitrarily. The set of 
equations (25) – (27) were numerically integrated, and the 
points where the orbit cuts the Poincaré surface defined 
by a1 = 1, with da1/dt > 0 (i. e. from “left” to “right”) are 
plotted, after ignoring the initial transient. 

Figure 1 shows a bifurcation diagram for a0 as a function 
ofν, which demonstrates the rich dynamical behavior of 
the system. Figure 1 shows the occurrence of simple limit 
cycle, and a cascade of period doubling bifurcations from 
right to left, leading to chaos, which is occasionally 
interrupted by periodic windows. We focus our attention at 
the periodic window marked by an arrow, for which we 
construct a detailed bifurcation diagram showed in fig. 
2(a) 

From figure 2(a) we can see that the periodic window is 
created after a saddle-node bifurcation in ν = νSNB = 
6.7547 (marked as SNB), where a period-3 stable 
periodic orbit (SPO) and a period-3 unstable periodic orbit 
(UPO) are created. As ν decreases, the SPO evolves to a 
period-6 orbit, then to a period-12 orbit, and so on. 
Eventually, this cascade of period doubling bifurcations 
leads to a three-band weak chaotic attractor. At ν = νIC  = 
6.7469, an abrupt enlargement of the banded chaotic 
attractor occurs in an event known as interior crisis  
where the banded chaotic attractor collides with the  

 
Figure 2 - (a) Enlargement of the bifurcation diagram 
showing the period-3 window; the dashed lines denotes 
the period-3 mediating UPO, SNB denotes saddle-node 
bifurcation and IC denotes interior crisis; (b) maximum 
Lyapunov exponent λMAX as a function of ν. 

mediating unstable periodic orbit, resulting in an 
enlargement of the chaotic attractor (Grebogi et al, 1983), 
marked as IC in figure 2(a). Figure 2(b) shows the value 
of the maximum Lyapunov exponent λMAX corresponding 
to each value ofν. Considering that λMAX > 0 is a signature 
of chaotic behavior, while λMAX < 0 corresponds to 
periodic behavior, figure 2(b) is in agreement with fig 2(a). 
The saddle-node bifurcation and the interior crisis events 
are manifested as discontinuities in the values of λMAX in 
figure 2(b). Note that, during the cascade of period 
duplication of the SPO, when λMAX = 0 a bifurcation 
occurs. 

Figure 3 shows the transition from order to chaos at the 
saddle-node bifurcation. At ν  = 6.7547 the time series (fig 
3(a)) and the Poincaré points (fig. 3(b)) show periodic 
behavior. Fig. 3(c) shows the power spectrum for the time 
series from fig. 3(a), in log-log scale. The periodic 
behavior is reflected by the occurrence of discrete peaks. 
At ν = 6.7548 the time series (fig. 3(d)) shows the 
occurrence of intermittency  known as type-I Pomeau-
Manneville intermittency (Pomeau and Manneville, 1980), 
which can be seen at the Poincaré points of fig3(e) 
represented by “bursts”  interrupting laminar periods that  
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Figure 3 - Transition from order to chaos in the saddle-
node bifurcation region; (a) time series of a0 and (b) their 
Poincaré points at the period-3 regime, (c) power 
spectrum of the time series in log-log scale; (d) time 
series of a0 and (e) Poincaré points at the same interval 
but for ν > νSNB = 6.7547. (f) Power spectrum of the 
chaotic time series in log-log scale. 

resemble the previous period-3 orbit after the saddle-
node bifurcation. The power spectrum shown in fig. 3(f) is 
now broad-band. 

Another type of intermittency occurs at the interior crisis. 
Figure 4(a) shows a time series at ν > νIC = 6.7469, 
whose Poincaré points (fig. 4(b)) show no strong chaotic 
bursts, and the orbit stays confined in the region 
corresponding to the weak (banded) chaotic attractor. At ν 
= 6.7469 the time series shows the crisis-induced 
intermittency, represented on the Poincaré points series 
(fig. 4(e)) as temporary “bursts” where the orbit 
corresponding to the pre-crisis chaotic attractor escapes 
to other regions of the phase space. Figs. 4(c) and 4(f) 
show the power-spectra for both cases in log-log scale. 
Note that the main peaks are observed at the pre-crisis 
and the post-crisis situations, but they are less 
pronounced in the latter case. 

Discussion and concluding remarks 

A set of real ordinary differential equations describing the 
nonlinear dynamics of three plasma waves in terms of 
their amplitudes were derived from the two-fluids motion 
equations, the continuity and the Maxwell equations. A 
more realistic model representing the physical situations 
described by the NLS equation may require to include  

 
Figure 4 - Transition from weak chaos to strong chaos in 
the interior crisis region; (a) time series of a0 and (b) their 
Poincaré points at the weak (banded) chaotic regime, (c) 
power spectrum of the time series in log-log scale; (d) 
time series of a0 and (e) Poincaré points at the same 
interval but for ν < νIC = 6.7469. (f) Power spectrum of the 
chaotic time series in log-log scale. 

additional modes resulting in a larger number of coupled 
ordinary differential equations. But for the case of weak 
instabilities, where higher modes of daughter waves are 
strongly damped, the truncation to just three terms can be 
justified. In this process the most restrictive assumption 
we made was to consider the amplitudes of the daughter 
waves as having the same value (a1 = a2) and the same 
growth/damping rate (γ1 = γ2). This allowed us to reduce 
our problem from four to three ODEs, simplifying the 
implementation of the numerical simulations.  

We presented the occurrence of two types of 
intermittency commonly found in nonlinear systems: type-
I Pomeau-Manneville and crisis-induced intermittency as 
we slightly modify the control parameterν. Also, we 
reported changes over the power spectrum obtained from 
the times series during the transition from order to chaos, 
and from weak chaos to strong chaos. 

 The analysis presented here can improve our 
understanding of turbulent phenomena in space plasmas, 
since solar wind observations frequently display 
intermittent features. It is useful to compare the power 
spectra obtained from the numerical simulations and from 
in-situ observations. For example, Karlický and Bárta 
(2004) recently showed a power spectrum obtained from 
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solar radio emissions that have some similar structural 
characteristics with the ones obtained in this work. 
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