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Abstract 

In this paper we present an investigation of intermittency 
in interplanetary Alfvén waves modeled by the DNLS 
equation. We show how the fluctuations of the magnetic 
field can evolve from periodic to chaotic dynamics, where 
two types of intermittency are identified: type-I Pomeau-
Manneville and crisis-induced intermittency. The 
characteristic intermittency time follows a well defined 
power-law as a function of the plasma viscosity. 

  

1. Introduction 

The interplanetary space is a highly conducting, 
essentially collisionless plasma, with approximate 
equalities of energy between the thermal densities and 
magnetic field (Parker, 1991). The strong correlation 
between the fluctuations of the ambient magnetic field 
and plasma velocities suggest the presence of Alfvén 
waves in the interplanetary solar wind.  

Alfvén waves are low-frequency electromagnetic plasma 
modes which propagate at the Alfvén velocity 

2
1)( 000 ρµυ BA = , where  is the strength of the 

ambient magnetic field, 
0B

0µ  is the permeability of vacuum 

and 0ρ  is the average mass density of the plasma. From 
a linear analysis of MHD equations, the dispersion 
relation of the Alfvén wave is found as Ak υω //= , where 

 is the component of the wave vector k parallel to B//k 0. 

The wave electric field E is perpendicular to B0 and lies in 
the (B0, k) plane. The perturbation of the fluid velocity u 
relates to the magnetic field’s perturbation vector b = δB0 
by u = ±b/(µ0ρ0)1/2, where the upper (lower) sign refers to 
the case k·B0 < 0 (k·B0 > 0). Thus, u and b are parallel 
and proportional to each other, and the plasma oscillates 
with the magnetic field lines (Benz, 1993; Bittencourt, 
1995; Stasiewicz et al., 2000). Alfvén waves play an 
important role in space plasmas, since they can heat 
solar corona plasmas, and accelerate particles in auroral 
and solar plasmas (Cargill, 2000; Stasiewicz et al., 2000; 
Del Zanna and Valli, 2002). 

Following Hada et al. (1990), Buti (1992), Chian et al. 
(1998, 2002a) and Rempel et al. (2004), we adopt here a 

low-dimensional model of Alfvén waves by seeking 
stationary solutions of the derivative nonlinear 
Schrödinger equation (DNLS) in the driver frame. This 
model enables us to acquire a clear insight of the 
nonlinear dynamical behavior of Alfvén systems which are 
difficult to obtain in the high-dimensional analysis of a 
partial differential equation. Stationary solutions can play 
a fundamental role in the full spatiotemporal solutions of 
the system, as demonstrated by He (1998) and He and 
Chian (2003) for a nonlinear drift wave equation.  

Recent analyses of velocity and magnetic field 
fluctuations in solar wind data indicate that the solar wind 
plasma is strongly intermittent (Bruno et al., 2001; Bruno 
et al., 2003). Intermittent events are characterized by time 
series that display time intervals with low variability 
interrupted by bursts of very high variability (Bruno et al., 
2001). We identify two types of intermittency in Alfvén 
waves modeled by the DNLS equation. In the Pomeau-
Manneville type-I intermittency the fluctuations of the 
magnetic field display phases of approximately periodic 
behavior (laminar phases) interrupted by phases of 
chaotic behavior (bursty phases). In the crisis-induced 
intermittency, the magnetic field exhibits an interplay 
between phases of weakly chaotic oscillations (“laminar” 
phases) and strongly chaotic oscillations (bursty phases). 

 

2. The derivative nonlinear Schrödinger 
equation 

The nonlinear dynamics of a large-amplitude Alfvén wave 
propagating along an ambient magnetic field in the x-
direction can be described by the derivative nonlinear 
Schrödinger equation: 

 (1)

where η is the dissipative scale length, b = by + ibz is the 
complex transverse wave magnetic field normalized to the 
constant ambient magnetic field B0, time t is normalized to 
the inverse of the ion cyclotron frequency ωci = eB0/mi, 
position x is normalized to cA/ωci, cA is the Alfvén velocity, 
α = 1/[4(1 - β)], β = cS

2/cA
2, cS = (P0/γρ0)1/2 is the acoustic 

velocity and µ is the dispersive parameter. The form of 
the driving force S(b, x, t) can be chosen to model wave 
growth resulting from an external source or an instability. 
We assume S(x, t) = A exp(ikø) to be a monochromatic 
circularly polarized wave with a wave phase ø = x – Vt, 
where V is a constant wave velocity, A and k are real 
constants.   

Seeking stationary solutions with b = b(ø), and setting ∂tb 
= 0, the first integral of Eq. (1) reduces to a low-
dimensional system of coupled ordinary differential 
equations: 



CHAOS AND INTERMITTENCY IN INTERPLANETARY ALFVÉN WAVES 2

 

where H = (b2 - 1)2/4 – (λ/2)(b - êy)2, the upper dot 
denotes derivative with respect to the phase variable τ = 
αb0

2øµ, ν = η/µ is the normalized dissipation parameter, 
b→ b/b0 (where b0 is an integration constant), b = (by, 
bz), τ = Ωφ, Ω = µk/(αb0

2), a = A/(αb0
2k), λ = -1 + 

V/(αb0
2). We assume β < 1, hence α > 0. 

In order to study the nonlinear dynamics of the system 
(2)-(4), we define a stroboscopic Poincaré map: 

 

where T = 2π/Ω is the driver period. 

Thus, one iteration of the Poincaré map, P(b(t)), 
corresponds to integrating Eqs. (2)-(4) from time τ to time 
τ + T. This type of projection defined in fixed time 
intervals is called stroboscopic projection, or time-T map. 
In the following sections we use τ = 0  for the initial phase 
and generate trajectories by plotting one Poincaré point at 
each value of τ + nT, n = 1, 2, … 

 

3. Nonlinear analysis of the DNLS equation 

The results discussed in this section were obtained by 
numerically integrating Eqs. (2)-(4) and varying the 
dissipation parameter ν while keeping the other 
parameters constant, with λ = 1/4, µ = 1/2, a = 0.3 and Ω 
= -1, thus the external driver is left-hand circularly 
polarized. The choice of parameter values is based on 
Chian et al. (1998, 2002a). 

Figure (1.a) shows the bifurcation diagram of the Alfvén 
attractor as a function of ν (Rempel and Chian, 2004).  
For this range of ν, the attracting set can be either chaotic 
or periodic. A periodic attractor is seen in the Poincaré 
map as a finite set of points that are periodically revisited 
by the flow of b. In a chaotic attractor the magnetic field 
oscillates irregularly in a bounded region of the phase 
space, never repeating its behavior. SNB denotes the 
saddle-node bifurcation that takes place at νSNB ≈ 
0.07738 and IC denotes the interior crisis that occurs at 
νIC ≈ 0.06212. The saddle-node bifurcation at νSNB marks 
the beginning of a periodic window in the bifurcation 
diagram. In the saddle-node bifurcation the simultaneous 
creation of a period-2 (p-2) attractor and a p-2 unstable 
periodic orbit occurs. The dashed lines in Fig. (1.a) 
represent the unstable periodic orbit (UPO) created at 
νSNB. As the value of ν is decreased, the p-2 attractor 
undergoes a cascade of period-doubling bifurcations, in 
each of which the period of the attractor is doubled. As 
the period tends towards infinity, a chaotic attractor is 
formed in two separate bands in the bifurcation diagram, 
called band region (B), following references (Szabó et al., 

1996) and (Szabó et al., 2000).  At ν = νIC the chaotic 
attractor collides with the p-2 UPO created at SNB, called 
the mediating unstable periodic orbit (MPO). The collision 
is responsible for an interior crisis, which is a sudden 
enlargement in the size of a chaotic attractor (Grebogi et 
al. 1983).  

 

Figure 1 (a) Bifurcation diagram of the attracting set in a period-2 
window. IC denotes interior crisis and SNB denotes saddle-node 
bifurcation. The dashed lines denote the p-2 unstable periodic orbit.  (b) 
Variation of the maximum Lyapunov exponent (λmax) of the attracting 
set as a function on ν. 

In Fig. (1.b) we plot the variation of the maximum 
Lyapunov exponent (λ) of the Alfvén attractor, as a 
function of ν. Positive values indicate the presence of a 
chaotic attractor, and negative values indicate that the 
attractor is periodic. Note that λ jumps abruptly at νSNB 
and νIC, indicating a sudden increase in the attractor’s 
chaoticity. 

Figure (2) shows the transition from order to chaos at the 
SNB. Figures (2.a), (2.c) and (2.e) display, respectively, 
the time series, stroboscopic time series and power 
spectrum at ν = 0.07738, where we can see a laminar 
behavior due to the p-2 Alfvén periodic attractor. The 
power spectrum of this periodic time series is 
characterized by discrete peaks. However, Figs. (2.b) and 
(2.d), at ν = 0.0780, show the occurrence of intermittency 
just to the right of SNB. This intermittency is know as 
type-I Pomeau-Manneville intermittency (Pomeau and 
Manneville, 1980), and it can be clearly seen in Fig. (2.b) 
that the Poincaré points show bursts interrupting laminar 
periods that resemble the p-2 attractor of Fig. (2.c). Figure 

(2) 

(3) 

(4) 

(a) 

(5) 

(b) 
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(2.f) displays the power spectrum of the chaotic time 
series in log-log scale. This broadband spectrum reflects 
the excitation of new wave frequencies at the onset of 
chaos.  

 

Figure 2 Transition from order to chaos in SNB: (a) and (b) time 
series, (c) and (d) stroboscopic time series and (e) and (f) power spectra 
of the time series in log-log scale. 

The Alfvén crisis-induced intermittency is characterized 
by time series containing weakly chaotic laminar phases 
that are randomly interrupted by strongly chaotic bursts.  
Figure (3) shows the transition from strong chaos to weak 
chaos at IC. In Figs.  (3.a)  and  (3.b)  we  have  the times 
series at ν = 0.0620 (ν < νIC) and ν = 0.06213 (ν > νIC), 
respectively. Figures (3.c) and (3.d) show the time series 
with driver cycles (Poincaré points). At  ν  = 0.0620 there 
are energy bursts which can be seen in both Figs. (3.a) 
and (3.c). In Fig. (3.d) the values of bz lie in the bands of 
the chaotic attractor shown in Fig. (1) and the bursty 
phase is not present. Thus, the interior is responsible for 
the onset of strong intermittent chaos. Finally, Figs. (3.e) 
and (3.f) show the power spectra for both cases. Both 
spectra are broadband, but the main peaks are more 
pronounced in Fig. (3.f) than in Fig. (3.e), since for ν = 
0.06213 the time series reflect a behavior which is closer 
to the periodic behavior of Fig. (2.a). 

The average transient time between bursts in an 
intermittent time series, obtained from a series of 
Poincaré points, tend the decreases as decreases ν in 
the IC and increases ν in the SNB. Grebogi et at. (1987b) 
have shown that for a wide class of dynamical system the 
dependence of the average duration of the laminar 
phases with the distance of the control parameter from its 
critical value follows a power-law. 

Intermittent time series can be characterized by the 
average time between bursts (average duration of laminar 
phases). Close to the critical values, νIC and νSNB, the 

laminar phases are long and their duration decreases as 
the dissipation is varied away from the critical value, and   

 
Figure 3 Transition from strong chaos to weak chaos in IC: (a) and 
(b) time series, (c) and (d) stroboscopic time series and (e) and (f) 
power spectra of the time series in log-log scale. 

 

in the direction of the strongly chaotic regime. In Fig. (4.a) 
we show the characteristic time between bursts as a 
function of the distance of ν from the critical value νIC in 
loglog scale. The dots are the values computed from time 
series and the line with slope γ ≈ -0.78 is a linear fit. In 
Fig. (4.b) the characteristic intermittency time for the type-
I Pomeau-Manneville intermittency is shown to follow a 
power-law with characteristic exponent γ ≈ -0.62. 
 
 

4. Discussion and concluding remarks 

In this paper we showed the onset of intermittent chaos in 
nonlinear Alfvén waves modeled by the DNLS equation. 
We presented the occurrence of two types of 
intermittency: type-I Pomeau-Manneville and crisis-
induced intermittency. Also, we reported changes in the 
power spectra obtained from the times series during the 
transition from order to chaos (in the saddle-node 
bifurcation) and from weak chaos to strong chaos (in the 
interior crisis). The average time between bursts in the 
intermittent time series follows a well defined power-law 
as a function of the plasma viscosity.  

Although we have exemplified our analysis using the 
stationary solutions of the DNLS equation, the bifurcation 
reported in this paper (saddle-node bifurcation, period-
doubling and interior crisis) are ubiquitous nonlinear 
dynamical phenomena in low and high-dimensional 
systems (Chian et al., 2002b; Rempel and Chian, 2003).  
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