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Abstract   
 
The inverse scattering series (ISS) has proven, and 
continues to prove, to be a highly effective formalism for 
the separate and isolated accomplishment of several key 
tasks of reflection seismic processing and inversion.  In 
particular, Weglein et al. (2000), Shaw et al. (2003), and 
Shaw (2005) describe the development of an algorithm 
distilled from the ISS that concerns itself with the location 
of subsurface reflectors with no prior knowledge, or 
related intervening estimation, of the medium wavespeed. 
The specific non-linear data activity that accomplishes 
this goal has been investigated by Shaw as such for an 
idealized 1D pre-stack acoustic experiment; we here 
describe the extension of those ideas to accommodate 
media with lateral variation.  This is a non-trivial step. 
Nevertheless, beneath the added algebraic complexity, 
recognizable patterns and mechanisms are visible.  
Analysis of these terms and patterns suggests that certain 
portions of the 2D reflector location mechanisms of the 
ISS are a good starting point for the creation of algorithms 
for the accurate depth location of reflectors with a 
moderate level of lateral variability.  The partial 2D 
imaging capability within the ISS is examined in this paper 
for the special case of a constant density acoustic 
medium and taking kh=0. We demonstrate numerical 
implementations of these forms and discuss ongoing work 
towards capturing further imaging capability residing 
within the ISS, especially with regards to the 
accommodation of larger levels of contrast and rapidity of 
spatial variation in medium properties. 

Introduction 

The inverse scattering series (ISS) comprises a direct, 
multidimensional inverse procedure for the reconstruction 
of an unknown spatial distribution of medium parameters 
in terms of measurements of a reflected wave field.  The 
formalism prescribes a set of non-linear (or order by 
order) operations to be carried out upon the data.  The 
history of its investigation as a tool for the processing and 
inversion of seismic data, and the development of the 
task-separated treatment of the ISS, is detailed by 
Weglein et al. (2003).  To a remarkable extent, the ISS 
may be cast to individually carry out what are externally 
defined to be classical objectives of seismic data 
processing and inversion: (1) elimination of free surface 

multiples, (2) attenuation of internal multiples,   (3) 
location in depth of rapid variations of medium 
parameters (imaging), and (4) determination of the 
parameter changes at those locations (inversion).  The 
ISS is  an infinite series expansion of the desired output in 
terms of the data and a chosen (often very simple) 
reference Green’s function, thus each of the above tasks 
is additionally carried out without an accurate input 
velocity model.   

These task-specific methods are engineered from the ISS 
through careful study and manipulation of the series 
components.  In this paper we pursue the components of 
the ISS that, cast appropriately, work on this latter 
problem, specifically the location in depth of reflectors 
given only the data and a simple (and highly inaccurate) 
reference Green’s function as input.  It is worth noting that 
in considering this portion and behavior of the ISS, we 
assume that an amount of pre-processing has occurred: 
the input to these methods are reflected seismic 
primaries, in other words the source wavelet, all source 
and receiver ghosts, and all free surface and internal 
multiples have been removed. 

Our strategy for developing non-linear methods of this 
kind is to work with the simplest conceivable framework 
that yet manages to reproduce the aspect of the problem 
that is of interest; by thus introducing only a single “new” 
(meaning not yet understood) facet to the problem, one 
may rationally explain any resulting “new” behavior of the 
ISS as being a result of that facet.  In this paper, we 
consider the idealized problem of non-linear, ISS-based 
imaging (Weglein et al., 2000; Shaw et al., 2003) in a 
single-parameter acoustic medium, as described for the 
1D pre-stack case by Shaw (2005), with the added 
complexity of lateral variability in the unknown medium 
parameter. 

This paper is organized as follows.  A brief review of the 
ISS is followed by a discussion of a form of the linear 
inverse, given a line source in a homogeneous reference 
medium.  This linear inverse is the input to the higher-
order terms of the ISS, which have elsewhere been 
altered and/or manipulated to separately handle, for 
instance, internal multiples (e.g., Weglein et al., 1997; 
Ramirez and Weglein, 2005; Nita and Weglein, 2005), 
imaging of primaries (Shaw, 2005), inversion of primaries 
(Zhang and Weglein, 2005), and coupled imaging-
inversion (e.g. Innanen, 2003).  Here the patterns of the 
imaging terms of the ISS are investigated; several 
second-order terms deemed to be responsible for 2D 
reflector location tasks are presented and described.  In 
the 2D case the imaging-type terms involve cascaded 
series for correction in depth and lateral coordinates: 
infinite series, and their closed-forms, for classes of (as 
opposed to all of) these 2D imaging terms are also 
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discussed.  We have studied the activity of the 2D 
imaging engine in the kh=0 setting and in terms of 
expansions of certain coefficients about a pseudo-
laterally-invariant case (i.e., in which a correction similar 
to the 1D normal incident case (Shaw, 2005) is performed 
at each lateral location).  The lowest order portions of this 
expansion collapse to a closed-form similar, and 
reducible, to the 1D normal incidence expression 
referenced above.   This low-order truncation is presumed 
to be appropriate for Earth models whose difference from 
the reference model is slowly-varying in the lateral 
coordinate.  When higher order imaging terms, in the 
same kh=0 setting and with the same low order truncation 
about the 1D normal incidence case, are considered, the 
results collapse to the high-order, 1D-normal incidence 
imaging mechanism described by Innanen (2005). These 
higher order terms are shown in that reference to better 
handle large contrast velocity models. We demonstrate 
the use of these 2D forms on two simple input models 
that are slowly varying in the lateral coordinate: one 
involving low-contrast imaging terms similar to those of 
Shaw (2005) in 1D normal incidence case, and one 
involving large-contrast imaging terms similar to those 
developed by Innanen (2005). The success of the 
imaging terms on data from these models is encouraging; 
we end with a discussion on continuing extensions of the 
ideas of this paper. 

Background 

In operator form, the differential equations describing 
wave propagation in an actual and a reference medium 
can be written as 

,ILG −=       ,00 IGL −=                                            (1)  

where L, L0 and G, G0 are the actual and reference 
differential and Green's operators, respectively, for a 
single temporal frequency (ω) and I is the identity 
operator. The above equations assume that the source 
and receiver signatures have been deconvolved. The 
perturbation V is defined as V=L0-L. The Lippmann-
Schwinger equation, G=G0+G0VG, may be expanded to 
form the forward scattering series: 

...000000 ++=− VGVGGVGGGG  .                           (2) 

As described in detail by Weglein et al. (2003), the 
representation of V=V1+V2+V3+… in eqn. (2) as an infinite 
series in orders of the measured scattered wave field G-
G0, gives rise to the ISS when like orders are equated: 

0100 GVGGGD =−= , 

010100200 GVGVGGVG −−= ,   

01020020100300 GVGVGGVGVGGVG −−−=             (3) 

       0101010 GVGVGVG− , 

etc.  By specifying a 1D normal incidence, constant 
density acoustic reference medium characterized by 
wavespeed c0, and perturbations V/(ω/c0)2 = α(z) on that 
reference that produce the actual medium c(z), i.e., in 

which α(z) = 1 - c0
2/c2(z), and through the use of a variety 

of changes of integration variable and instances of 
integration by parts, Shaw (2005) identifies a portion of 
the ISS sum α = α1 + α2 + α3 +… that acts to alter the 
locations of the discontinuities of the linear inverse α1 
(which is in essence the Born approximation, c.f. Cohen 
and Bleistein, 1979) from the wrong depth to the correct 
depth.  The subseries is: 
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The integration by parts analysis exposes and isolates the 
engine of non-linear imaging, which involves (1) the 
derivative of the linear inverse with respect to the 
coordinate in which the reflector location is being 
corrected, that is (2) weighted by a depth integral of the 
same linear inverse.  We proceed with a study of related 
forms in the more complex 2D case. 

Equations for multidimensional imaging 

Eqn. (3) may also be realized for 2D constant density 
acoustic media, in which the single parameter (cast again 
as a perturbation on a homogeneous reference medium 
with wavespeed c0) 

),(/1),( 22
0 zxcczx −=α  

is the essential quantity. In the corresponding ISS 
representation α(x,z) = α1(x,z) + α2(x,z) + α3(x,z) +…, the 
linear inverse is expressible in terms of the data via the 
solution of the first equation in (3) as (Clayton and Stolt, 
1981): 
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in the midpoint conjugate (km) and depth conjugate (kz) 
domains with the restriction kh=0; the quantity D as it 
appears may be computed from wave field information on 
the measurement surface: 
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where the data in the integrand corresponds to D(xg,xs,t). 
With this specific computation of the distribution, in lateral 
and depth coordinates, of the linear inverse, we turn to 
higher order terms in the ISS, and express them as 
operations on α1(x,z) in analogy to the 1D case.  In further 
analogy to the 1D case we apply an integration-by-parts 
strategy to extract terms with the imaging-like aspect 
visible in eqn. (4).  Solving the second equation in (3) for 
α2(x,z), and manipulating the results accordingly, 
produces, amongst other terms (Liu et al., 2005): 
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These terms capture much of the behavior intuitively 
expected from imaging terms at second order for vertical 
and lateral correction: the first, in eqn. (6), is an exact 
reproduction of the 1D depth imaging mechanism, 
involving a first derivative of α1 with respect to depth 
weighted by the integral of α1 down to that depth.  The 
term in eqn. (7), meanwhile (although having no 
analogous 1D term), has the expected hallmarks of a 
lateral corrector at second order, involving a first 
derivative with respect to the lateral coordinate, weighted 
by the depth integral of the rate of change of α1.  Notice 
that this term is identically zero if the linear inverse does 
not vary laterally.  We surmise that this term is the first in 
an infinite series correcting the lateral error in the linear 
inverse for instances of kh=0. 

These results lead to two main conclusions.  First, the 
presence, in the 2D case, of an exact reproduction of the 
1D depth imaging engine, as terms that are zero’th order 
in ∂α1/∂x (and the tendency of the imaging terms of the 
ISS to behave like nested, or cascaded Taylor’s series), 
suggests that we consider the vertical and lateral imaging 
problem as being akin to a series expansion about the 
purely vertical imaging problem.  Lateral corrector terms 
that are of low order should be effective when applied to 
problems involving slow lateral variability; rapid lateral 
variations will evidently require terms of higher-order in 
∂α1/∂x.  Second, this re-appearance of the same patterns 
as those found in the 1D case allow for the same 
summations to closed-form that are in place in 1D 
scenarios.  Hence, the zero’th order lateral corrector, and 
infinite order depth corrector expression for the 2D case is 
(c.f. eqn. (4)):  
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We refer to this quantity as LOIS to conform with 
descriptions of the 1D imaging algorithm as the “leading-
order imaging subseries” (leading order referring to the 
fact that the subseries coefficients are approximated as 
the integral of the first power of α1 only (Shaw, 2005)).  As 
in Shaw’s analysis, we consider eqn. (8) to be appropriate 
for media of low but spatially sustained contrast; a depth 
corrector that involves the same engine as in the 1D 
case, but with a different quantity under scrutiny at each 
x.  In contrast, inclusion of a larger cohort of ISS imaging 
terms, which Innanen (2005) describes as the 
incorporation of a geometric series in α1 into the 
integrands of the coefficients of eqns. (4) and (8), leads to 
a second expression 
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that we consider to be appropriate for larger contrast 
media (and hence we refer to as HOIS).  The exchange of 
input and output variables has the empirically useful effect 
of changing the integration limits in (9) (Liu et al., 2005). 
In the following we test both expressions numerically. 

To summarize: manipulation of the 2D ISS equations in 
the case of a single-parameter acoustic medium leads to 
several imaging-like terms.  Some are identical to the 1D 
case, and thus may be summed to closed form.  Others 
have no 1D counterpart, and are currently interpreted as 
low-order terms correcting for lateral errors in reflector 
location.  Since the 2D imaging terms appear to treat the 
lateral/vertical problem as an expansion about the vertical 
problem, we expect the closed-form depth-imaging 
expressions (8) and (9) to be appropriate for instances of 
smooth lateral variation in the difference between the 
actual perturbation α(x,z) and the linear inverse α1(x,z). 

Numerical examples 

We present some simple and illustrative examples of the 
“low lateral order” 2D imaging algorithms of eqns. (8) and 
(9).  Figs. 1 and 2 illustrate the acoustic single parameter 
models we consider, and Figs. 3 and 4 illustrate example 
shot records from the synthetic data sets derived from 
these models.  The models chiefly differ in their levels of 
medium contrast, with Fig. 1 a relatively low-contrast 
example and Fig. 2 a large-contrast example.  The data is 
created using a fourth-order finite difference scheme, with 
a temporal sampling rate of 2ms and a lateral spatial 
sampling rate of 5m.  The source signature is the first 
derivative of a Gaussian with a peak frequency of 28Hz.  
The resultant data are used as described above to 
compute the linear inverse associated with a 
homogeneous reference medium of wavespeed 
c0=1500m/s.  These linear outputs are illustrated in Figs. 
5 and 6 (on the left panels) for the low- and high-contrast 
cases respectively.  The lateral variation in the top 
interface, and the presence of a sustained difference 
between the actual and the reference media in general, 
can be readily seen to negatively influence the locations 
of the deeper reflectors in these linear results.  The task 
of the non-linear imaging mechanism is to correct the 
locations of these reflectors laterally and vertically, 
although by design the lateral error is very smooth in 
these examples.  The correct locations of the horizons are 
illustrated in red. 

Figs. 5 and 6 (on the right panels) demonstrate the effect 
of implementing eqn. (8) on the linear input (seen on the 
left).  In Fig. 5, the aberrant lateral variation in the lower 
reflectors seen in the linear inverse has been largely 
corrected for as has the bulk depth error.  However, in the 
large-contrast case in Fig. 6 the results of eqn. (8), i.e. 
LOIS, are less successful in performing the requisite 
correction, which is clearly more “intensive”.  The high-
order imaging mechanism of eqn. (9) is brought to bear 
on the problem in Fig. 7, in which we see a return to the 
highly satisfactory corrective nature of the non-linear 
imaging, both in correcting the bulk depth error of the 
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reflectors and in flattening the erroneous lateral variation 
of the lower interfaces. 

Conclusions 

We present the first results of an extension of the velocity-
independent imaging methods of the ISS to 
accommodate media that vary laterally as well as in 
depth.  In spite of the added complexity of the ISS terms, 
the use of an integration-by-parts thinking produces 
classes of terms that either reproduce precisely the depth 
corrective terms of the 1D normal incidence case, or have 
the hallmarks of being part of a laterally corrective 
mechanism.  Both classes of terms call for specific and 
reasonably straightforward non-linear data activity, that 
(as shown for a low-order approximation in the lateral 
correction and appropriate Earth models) we demonstrate 
has an extremely encouraging impact on  2D synthetic 
data.  Ongoing research is geared towards moving 
beyond current simplifying restrictions, e.g. fixed kh=0, 
and the incorporation of only low-order lateral correction 
terms. 
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Figure 1. First input model for numerical testing of 2D          
non-linear imaging algorithm.  Top interface has a spatial 
variation designed to produce lateral and vertical error in 
the locations of reflectors predicted by the linear inverse 
and a homogeneous reference medium.  Contrasts of 
moderate magnitude are chosen. 

 

 
Figure 2.   Second input model for numerical testing of 2D 
non-linear imaging algorithm.  Again, the top interface is 
designed to produce specific lateral and vertical error in 
the linearly-computed locations of the deeper horizons, 
given a homogeneous reference medium.  Contrasts of 
large magnitude are chosen. 
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    Figure 3.  An example single shot record from synthetic data,        
aagenerated over model 1 (Fig. 1).  Fourth-order finite difference 
aascheme utilized. 

 

                      
 

    Figure 4.  An example single shot record from synthetic data,        
aagenerated over model 2 (Fig. 2).  Fourth-order finite difference 
aascheme utilized. 

 

 
Figure 5.  Left panel: linear inverse with homogeneous 
wavespeed, computed from synthetic data over model 1 (Fig. 3). 
Lateral and vertical errors in reflector locations are visible when 
compared to actual horizon depths (red).  Right panel: LOIS 
enacted on the linear input, via eqn. (8) with accurate results.   

 

 
Figure 6.  Left panel: linear inverse with homogeneous 
wavespeed, computed from synthetic data over model 2 (Fig. 4). 
Lateral and vertical errors in reflector locations are visible when 
compared to actual horizon depths (red).  Right panel: LOIS 
enacted on the linear input, via eqn. (8) with inaccurate results. 

 
Figure 7.  Model 2 revisited. Left panel: LOIS enacted on the 
linear input, via eqn. (8) with inaccurate results.  Right panel: 
HOIS enacted on the linear input, via eqn. (9), with accurate 
results. 


