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(the log reading for a null porosity rock), which is,
normally, determined in conventional core analysis. The
formation water resistivity may be derived by the
spontaneous potential log, or directly measure in
laboratory on samples of formation water collected in the
interest depths. The last possibility is the 112 of catalnag,
with regional values of water resistivity. The Archie
equation still involves parameters denominated as
Archie’s exponents (cementation exponent and saturation
exponent), which only can be obtained by laboratory
experiments with samples of reservoir rock. The
cementation exponent ( ) is the slope of a straight line
determined by linear regression in a plot involving the
formation factor (ratio between water saturated rock
resistivity and water resistivity) and porosity. The
saturation exponent ( ) is the slope of linear regression
produced in a graph involving the ratio between rock
resistivity and water saturated rock resistivity in the
ordinate, and water saturation in the ahscissa,

In many practical situations, mainly in well site, a
quick and realistic solution of Archie equation for water
saturation may be a hard problem without core
information. This implies in low confidence on porosity
and the use of guessed values for cementation exponent
and water resistivity. In this scenario, Hingle plot and
Pickett plot are popular graphical solutions, which explore
a linear relation between formation resistivity and porosity
to solve Archie equation. Particularly, for water-bearing
‘ this linear relation is called
as water line. Hingle plot is set up to the case where
formation water resistivity and matrix parameter for
porosity calculation are unknown. The slope of water line
corresponds to formation water resistivity at formation
temperature and the intersection with the abscissa gives
the matrix porosity parameter. Pickett plot is indicated for
the case where formation water resistivity and
cementation exponent are unknown. The slope and
intersection with 100% porosity of water line correspond
to cementation exponent and formation water resistivity at
formation temperature respectively. Thus, the association
of these methods produces all parameters to solve Archie
equatinn far water satiratinn,

Independent of the competence of Hingle plot and
Pickett plot to solve Archie equation, as any graphical
method, they are very sensible to visual misinterpretation
and deeply dependent of interpreter expertise to locate
water line correctlv,

Intelligent algorithms are a large class of computing
techniques, as artificial neural network, evolutionary
computing, and fuzzy inference, mostly used for data
analysis and interpretation. Intelligent algorithms are an
increasingly powerful tool for making breakthroughs in the
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science and engineering fields by transforming data into
infarmatinn and infarmatinn inta knawledaer (Nikravesh,
2004).

Here, we interpret the water line as an angular
pattern of all points from 100% water saturated zone in
the Hingle plot or in the Pickett plot. To produce a
computer-aid interpretation that may reduce the inherent
imprecision in the visual location of water line, we present
an intelligent algorithm that governs the operation of two
angular competitive neural networks. The intelligent
algorithm is able to recognize the angular pattern
presented in water-bearing zones in Hingle plot and in
Pickett plot and correctly locate the water line in both
crossplots. The evaluation of this method is accomplished
on synthetic data, that honor the Archie equation and
actual well log data.

Methodology
Angular Competitive Neural Network

Angular competitive neural network was designed
to find statistically relevant angular patterns in a Cartesian
plane, where each point is associated to a position vector.
Thus, an angular pattern can be understood as an angle
that relates several vectors in the plane. This particular
angle can be measured in relation to an orthogonal axis
or in relation to a reference vector. Normally, the vectors
chosen as reference integrates the training set.

The architecture of angular competitive network is
composed by three layers: the input layer, the competitive
layer and one intermediary layer, the selective layer, as
shown in Figure 1.
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Figure 1 - Architecture of angular competitive
neural network.

The input layer receives the external input and the
number of input neurons is problem dependent. The
external data are position vectors in Cartesian plane and
are stored as complex numbers, exploring the analogy
between the Cartesian plane and complex plane. This

can be understood just as storage form of a vector as a
simple element of a complex matrix. The input data in the
angular competitive neural network will be formed by
unitary vectors obtained from the vector resulting of the
subtraction of each position vector in the input data by
each one in the training set, as shown in Figure 2. The
input data is stored in a complex matrix, the global
difference matrix, which has number of rows equal to the
number of neurons in the input layer and number of
columns equal to the number of vectors in training set.

Input data

Training set

Figure 2 — Input data and training set of angular
competitive network.

The selective layer operates to promote the
selection of input data. A special activation function
defines the selection criterion that acts in the sense of
allowing or not the production of an effective output. Each
selective neuron represents one vector of training set.

Training set is the subset of input data used to
calculate the weight matrix linking input layer with
selective layer. The criterion used to choose the
components of training set is problem dependent. Each
training set defines dynamically the number of neurons in
the selective layer and in the competitive layer.

The weight matrix between the input and selective
layers is a complex matrix constructed in a convenient
form to storage the coordinate pair of each unitary
difference vector as complex number, with the abscissa
as real part and the ordinate as imaginary part. The
unitary difference vectors are calculated from the vector
resulting of the subtraction of each position vector in the
training set by each other' This square complex matrix
has order equal to the number of vectors in the training
set and niill diaannal,

For each time step, one row of global difference
matrix is presented to the input layer. The operation
accomplished in each selective neuron results in the input
potential (1) corresponding to the real part of the complex
product of each element in the input vector (row of global
difference matrix) and the complex conjugated of each
element of the weight vector (column of the weight
matrix}. This operation is calculates the cosine of the
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angle between this unitary difference vectors. The
condition for two vectors have the same direction is the
cosine to be equal to 1.0 or -1.0 The activation function
for each selective neuron verifies the occurrence of input
potential in the intervals [-1 -0.98] or [0.98 1] producing an
output equal to the unit, as shown in Figure 3.
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Figure 3 - Activation function. u is the input
potential. Y is the neuron output.

The selective layer is activated by only one neuron
of the input layer and it produces a binary vector as
output that is passed to the competitive layer.

The competitive layer acts exactly as a classical
competitive layer, promoting a competition among their
neurons and allowing that only one of them wins the
competition and produce the network output.

Each neuron in the competitive layer produces a
summation of the number of times that its linked neuron in
selective layer was activated. After the presentation of all
the columns of global difference matrix, the neurons in the
output layer compete among them. The winner neuron is
that one linked to the selective neuron with the largest
number of activations.

Pickett plot

In Pickett plot (Pickett, 1966), the Archie equation is
rewrite considering the saturation exponent (n) equal to
2.0 and takes the logarithm on both sides of Archie
equation, in the form.

Ry,
log R, = —mlog ¢ + log (S_") (1)

¢

represents porosity. S,, is the water saturation. m is the

cementation exponent and R, is the formation water

resistivity. In a log-log paper, equation 1 describes a
family of lines with slope equal to cementation exponent.

All points with unit water saturation describe a

straight line called as water line. The slope of water line is

t

formation temperature, is determined by the intersection

of water line with the vertical by 100% porosity, as shown
in Figure 4.
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Figure 4 — Pickett plot.

Hingle plot

The Hingle plot assumes the saturation exponent
and cementation exponent, both equal to 2.0 and rewrites
the Archie equation in the form

Lo,

Clean formations, 100% water saturated will
produce points in Hingle plot that will fall in a line of
maxim inclination, the water line, as shown in Figure 5.

Water resistivity can be calculated by the slope of
water line,

When porosity cannot be calculated, the horizontal
axis can be assigned, directly, in log readings. The
intersection of water line with porosity log axis results in
the matrix porosity parameter.
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Figure 5 — Hingle plot.
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Association of Hingle and Pickett Plots

In many practical situations, mainly in well site, a
quick and realistic solution of Archie equation for water
saturation may be a hard problem without core
information. Considering a sonde composed by one deep
resistivity tool and sonic tool, for instance. The water
saturation can be accomplished associating the Hingle
and Pickett methadg,

In the first step, Hingle plot is built with deep
resistivity log readings and sonic log readings. The
intersection of determined water line with horizontal axis
gives a first approach for the matrix transit time, which
permits the porosity calculation, considering water as
interstitial fliiid,

In the second step, Pickett plot is constructed using
deep resistivity log readings and calculated porosity. The
interpretation of Pickett plot allows the determination of
the cementation exponent and water resistivity. This
process is interactive being looked for a better approach
for water line in both graphs.

Methodology

To produce a computer-aid interpretation that may
reduce the inherent imprecision in the visual location of
water line in Hingle plot and in Pickett plot, we present an
intelligent algorithm that governs the operation of two
angular competitive neural networks.

We assume the particular resistivity-porosity
dependence showed by well log data in the Hingle plot
and Pickett plot as angular pattern. An angular pattern
can be understood as a sub set of input data with the
largest number of vectors with the same direction.

The input data for each one angular competitive
network will be formed by unity vectors calculated with the
result of the subtraction of each position vector in the
Hingle plot and Pickett plot for each position vector in the
training set.

The training set used by both angular competitive
networks is formed based on deep resistivity log readings
with small resistivity values. These points are natural
candidates to represent water-bearing formation.

The weight matrix between the input and selective
layers for each angular competitive neural network will be
a complex matrix constructed in a convenient form to
storage the coordinate pair of each unity difference vector
as complex number.

The location of water line in Hingle plot and Pickett
plot performed by angular competitive neural network
assumes two premises. The first one supposes the
presence of at less two water-bearing points in the
traininAa ent ThAa cAanAnAd nramica AAne idAvre that wamntAr,
bearing interval has a sufficient number of sampled
points.

In each plot, the location of water line is associated
to the winner neuron in the competitive layer. Let be k the
position of the winner neuron, this indicates the direction
of the difference vector k corresponding to the k element
of the training set is the one with the largest number of

align points, this defines the direction of water line by the
k point in the Hingle plot and Pickett plot, respectively

Results

The competence of intelligent algorithm to control
the operation of angular competitive neural networks to
interpret the association of Hingle plot and Pickett plot is
presented with synthetic logging data. Resistivity log
readings are generated using Archie equation. Sonic log
readings are produced using Wyllie equation considering
quartz matrix (At,, = 55.5 us.ft™1), True porosity is
aenerated as random valiies in the claged interval 0 05,
0.3]. Water saturation are random values in the interval

2
ohm. m and cementatinn exnanent ig taken eanial tn 2 0,

Figure 6 shows a set of synthetic points represented
by red circles in Hingle plot (Figure 6-A) and in Pickett
plot (Figure 6-B). In both graphics, the true water line is
draw Aas red line,

Figure 7 shows the first result of this intelligent
algorithm in the interpretation of Hingle plot. The blue
circles show the training set. The interpreted water line
(blue line) is coincident with the true water line and
determines the quartz transit time. It can be observed that
even in the presence of noise data, the angular
competitive network was robust to obtain the correct
locatinn of the water line,

Figure 8 shows the final result of this intelligent
algorithm, used the matrix transit time determined early to
porosity calculation and interpret the Pickett plot. The blue
circles show the training set. The interpreted water line
(blue line) is coincident with the true water line and
determines the cementation exponent and water
resistivitv,

In Figure 9, we compare the results of present
intelligent algorithm (blue lines) with the straight line
located by linear regression (black line) with the points in
training set. It can be observed that linear regression is
unable to locate the water line.

We show an evaluation of intelligent algorithm with
actual wireline data We 11se a niihlished data (Darlina,
2005). In Figure 10 we show the correspondent Hingle
plot, with wireline points as red circles. The circles in blue
represent the training set. To produce this Hingle plot, we
use raw deen regigtivitv and dengitv lna readinng,

Figure 11 shows the interpreted water line (blue line)
in Pickett plot. Porosity is calculated using the density
matrix parameter determined early. The black line
represents the water line defined by linear regression with
same points of the training set (blue circles). It is
observed that the linear regression is unable to produce
the correct location of water line.

The Table 1 allows the comparison among the
values of water resistivity, matrix density and cementation
exponent obtained by three methods: core analysis
(Darling, 2005), intelligent algorithm, and linear
regression.
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Conclusions

This work presents an intelligent algorithm that
controls two sequential angular competitive neural
networks to interpret Hingle plot determining the matrix
parameter need to porosity calculation, which permits the
construction of Pickett plot generating the water resistivity
and cementation exponent. Thus, all quantities involved in
Archie equation are defined and the water saturation is
straightfarward,

For many geologists and petroleum engineers
Hingle plot and Pickett plot are considered as a quick look
method.  This kind of sense is not due to naive
simplifications of the rock model or theoretical
contradictions in the relationship defined in the Archie
equation, but mainly by the visual interpretation needed
for the location of water line based only in interpreter
expertise.

The evaluation of this method showed estimate of
the water resistivity matrix porosity parameter and
cementation exponent values very close to that one
obtained by direct measure in laboratory by core analysis.

Table 1 — Water resistivity, matrix density and
cementation exponent.

Method Rw Po m
Core analysis
(Darling, 2005) | 0025 266 1.9

Intelligent
algorithm 0.028 265 1.85

Linear regression 0.27 12.1 0.74
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Figure 6 — Synthetic data. A- Hingle plot. B- Pickett
plot. True water line is in red.
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Figure 7 - Hingle plot. Synthetic data are red
circles. Training set are blue circles. Interpreted
water line is in blue.
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Figure 8 — Pickett plot. Synthetic data are red
circles. Training set are blue circles. Interpreted
water line is in blue.
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Figure 9 - Synthetic data. A- Hingle plot. B- Pickett
Intelligent algorithm (blue line) compared with
linear regression (black line).
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Figure 10 — Hingle plot. Actual wireline data (red
circles). Training set (blue circles). Interpreted
water line is in blue.
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Figure 11 — Pickett plot. Actual wireline data (red
circles). Training set (blue circles). Interpreted
water line is in blue. Black line is generated by
linear regression.
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