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in a borehole can be estimated ly the smallest distance
from the point defined by M and N coordinates calculated
with correspondents log readings to each matrix point. In
a simple geological simplification, the matrix or the solid
framework of a sedimentary rock is composed by only
one mineral. This procedure simplifies the mineral
composition of a sedimentary rock, thus rock type is
identified, not by means of a complete geological
description, but through the identification of the mineral
with highest relative volume in the rock composition. Of
course, this simplification does not permit the separation
between two different sandstones;, but is strong enough to
separate sandstones from limestones, which may helps in
the construction of stratigraphic cnliimn,

Tha nrinainal limitatinn ~f MU plot is the presence of
clays, which can strongly shift the nnints in the M-N nlane,
leading to erroneous lithology and limits its application to
clean reservoir rocks (Luthi, 2001). The conventional use
of M-N plot for a logged interval of a borehole supposes a
previous log interpretation ancl the application of a
convenient  chale  enrrectinn,  This  procedure  may
introduce errors in the M and N values, once the methods
for shale correction need the information about lithology
of reservoir rock (matrix) and abont neinhharhnnd shales,
Normally, the porosity parameterss of matrix and shale are
unknown at this moment and Quessed values can be
assumed resulting in erroneous lithology and non-realistic
porosity values.

We present an intelligent algorithm to approximate
the lithology identification using raw well log data, without
core calibration and free of porosity and shale effects on
log readings. We explore the interesting geometric
characteristics exhibited by the N
plot using competitive neural networks,

Intelligent algorithm is a generic name for a set of
numeric methods such as artificial neural network, fuzzy
inference, and genetic or evolutionary computing, mostly
used for data analysis and interpretation. Intelligent
algorithms are an increasingly powerful tool for making
breakthroughs in the science and engineering fields by
transforming data into information and information into
knowledae (Nikravesh  2004). In recent years, some
papers have been published involving the solution of a
series of well logging problems with artificial neural
networks (Aminian & Ameri, 2005) and genetic algorithms
(Velez-Langs, 2005). These techniques aim at the
incorporation of all logging data available to produce
improved oil reserves estimation.

We consider the occurrence of angular patterns in
the spatial data spread in the M-N plot and introduce a
new competitive neural network specialized to find
statically relevant angular patterns in the input data. This
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characteristic of angular competitive neural network
permits the realization of angular pattern recognition
producing the mapping and the classification of input data
(M, N) in lithology information based on the criterions of
M-N plot interpretation. Additionally, this method can
handle with raw well log data; so, we present a
convenient treatment to treat shaly-reservoir rocks without
shale corrections. Our goal is to overcome the lack of
accuracy and improve the lithology identification from
conventional well logging data without the use of
guessing parameters or core calibrations.

We show the behavior and evaluate this method
with synthetic data and actual well log data from
boreholes in Namorado’s oil field, Campos’s basin, Brazil.

Methodology

Namorado's oil field in Campos’s basin is located
offshore Rio de Janeiro in southeastern Brazil and covers
an area of about 100,000 Km? from the coastline to the
3400-m isobaths., The Campos basin presents an
evolutionary sequence of a rift to drift basin and it is part
of the Atlantic Ocean passive margin and presently, is the
mostly productive and prolific offshore Brazilian

is
characterized by a sequence of clastics rocks
(conglomerates, sandstones and shales) and carbonate
rocks (marls and diamictites), both of transgressive
characteristics.

The M-N plot

The M-N plot (Burke et al., 1969) was one of several
methods that were devised to extract lithology information
from porosity logs that were published and put to
commercial use It nses a narticllar comhination of sonie,
density and neutron porosity logs and attempts to remove

A
combination of the sonic and density measurements is
used to define the M parameter, which is the slope of the
straight line in the sonic-density crossplot that varies
slightly between the three major lithologies due the matrix
endpoints. The neutron-density crossplot yields a similar
slope, designated as N. Once again, the three matrix

N
plot shows the two slopes plotted one against the other.

The M and N parameters can be expressed in
metric units as

At,, — At
M=—"—""0.003 1)
Pm ~ Pw
N = ¢Nw B (PNm (2)
Pm — Pw

In equations (1) and (2), At,, represents the transit
time for fresh water. At,, is the matrix transit time; p,,, the
matrix density; p,, the fresh water density; ¢nw, the
water neutron porosity and ¢nm, the matrix neutron

porosity. The use of convenient values for the matrix of
reservoir rocks (quartz, calcite, etc) defines the matrix or

N
plot, as shown in Figure 1. These points act like a fixed
patterns to lithologies identification.

The M and N values can be obtained with log
readings by replacing the matrix values in the respective
equations by the appropriate log readings. If those M and
N values are plotted on the overlay of the M-N plot, it is
possible to approximate the lithology.

The presence of shale can strongly shift the points
in the M-N plane, leading to erroneous mineral
assemblages. Part of this is due the nonlinearity of the
neutron response, whereas the apparent values of M are
determined by passing a straight line in the appropriate
space to the fluid-filled case (Luthi, 2001).

To consider clean and shaly rocks, we modify the
shaly rock model, including the shale in the matrix
constitution.

The conventional porosity log equation is

p= (PPW + Vshpsh + (1 - (’) - Vsh)pm (3)

In equation 3, p represents one porosity log or a
neutron porosity, sonic or density log reading. Vg, is the
shale volume and ¢ is the porosity. ps, and p,, are
porosity parameters for shale and matrix, respectively.
With the rock model adopted, the porosity log equation
can be expressed as

p=a¢p,+ (1-PIpn 4)

In equation 4, the term p,, is the modified matrix
porosity parameter, in the form

. _ Vsh
Pm =1 =9

This rock model considers the shale properties in
the reservoir rock as equal the properties of
neighborhoods shale layers. In this approach, the visual
interpretation of porosity logs, as shale cut-off is
eliminated. The M and N can be normally calculated with
equations 1 and 2 using raw logging readings. This
approach treats the shale as part of rock framework and
conventional interpretation of M-N plot can be realized.

The M-N plot does not supply the shale identification
directly, once the variabilty in shale composition
nrodiices a larae variation in it nhvsical nronerties,
impeding the calculus of characteristic values for M and
N, as were done for common minerals in the sedimentary
rocks.

We use an intelligent algorithm with competitive
neural networks (Andrade, 2007} to locate the shale point
in the M-N plot.

Psh t (1 - Vsh)pm (5)

Angular Competitive Neural Network

The most common architecture of a competitive
netiral netwnrk has twn lavere in ite decinn The firat ane,
called as input layer, receives the external input data.
This layer contains only sensorial units that receive and
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pass the input data to second layer, which is the
nraces]ina  laver alen  ealled as  enmnetitive |2\IP,Y,
composed by competitive neurons. These two layers are
full connected by synaptic weights. The competitive
neurons are forced to compete among them; in such way,
that only one neuron (winner neuron) stays active or
produces a non-null output signal in each time step. The
useful output of a competitive neural network can be the
location of winner neuron in the competitive layer, as
much as its synaptic weights values.
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Figure 1 — The M-N plot.

The architecture of angular competitive network is
composed by three layers: the input layer, the competitive
layer and one intermediate layer, the selective layer, as
shown in Figure 2.

The selective layer operates to promote the
selection of input data. A special activation function
defines the selection criterion that acts in the sense of
allowing or not the production of an effective output. Each
selective neuron represents a point of training set or one
column of weight matrix.

The competitive layer acts exactly as a classical
competitive layer, promoting a competition among their
neurons and allowing that only one of them wins the
competition and produce the layer output.

Training set is the subset of input data used for
determination of the weight matrix. The training set acts
as angular patterns to be discovered in the input data.
Each training set defines dynamically the number of
neurons in the selective layer and in the competitive layer.

The learning process of angular competitive neural
network associates each point in the training set to a
position vector and calculates unitary vectors resulting of

the subtraction of one position vector by all the others in
the training set.

Input Selective Competitive
laver laver laver

Figure 2 — Architecture of angular competitive
neural network.

The weight matrix between the input and selective
layers is defined in a convenient form to storage the
coordinate pair of each unitary difference vector as
complex number, with the abscissa as real part and the
ordinate as imaginary part. This square complex matrix
has order equal to the number of position vectors in the
training set and null diagonal.

The input data in the angular competitive network
will be formed by the difference vectors resulting from the
subtraction of each position vector in the input data for
each position vector in the training set. We take the
unitary vector of each difference vector. The form of
storage of those unitary difference vectors is equal to the
form used for the weight matrix as column of a complex
matrix. This global difference matrix has a number of rows
equal to the number of neurons in the input layer and a
number of enliimne eanial ta the niimher of inniit data,

For each time step, a column of the global difference
matrix is presented to the input layer. The input potential
(u) of each selective neuron is the real part of the
complex product of each element in the input vector
(column of the global difference matrix) and the complex
conjugated of each element of the weight vector (column
of the weight matrix). This operation computes the cosine
of the angle between those unitary difference vectors.
The condition for two vectors have the same direction
says that cosine of the angle between then is equal to 1
or -1. The activation function for each selective neuron is
a piecewise linear function that verifies the absolute value
of input potential (|u|) to produce the output (y), as shown
in Figure 3.

After the presentation of one column of global
difference matrix, the selective layer produces outputs
that are sent as input to the competitive layer. The
neurons in the output layer compete among them and the
winner neuron is the one with highest input.

The output of competitive layer is a binary vector
with the value one in the position of winner neuron and
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zeros for all the others. The useful information is the
position of non-null value, which indicates the vector in
the training set approximately aligned with the input
vector or with the same angular pattern.

The behavior of angular competitive neural network
can be appreciated in the lithology identification.

A\ 4

R

0.9

Figure 3 — Activation function.
Lithology Identification

Different branches of geosciences may use the
same term with different meaning. Lithology is a good
example of this fact; while the geologist is free to use
linguistic terms to describe a hand-sample, the log analyst
cannot do the same. The lithology identification is made
by the principal mineral determination, i.e. the principal

plane.

The solution of a pattern recognition problem claims
for the number and the meaning of actual classes in the
input data. In these terms, we present the method for
lithology identification in three steps. In the first one, we
locate the shale point in the M-N plot. In the second step,
we produce the identification of representative points in
the M-N plot for each rock type in the logged interval and
finally, we realize the lithology identification.

To produce the location of shale point, we use a
Aarmnatitiiva nAanival nAabivavl, wihinh ic AllA A intArarat A =
plot composed by the M-N plot and the natural gamma
ray log in the sense of a pattern recognition technique.
The competition rule states that winner neuron has
synaptic weights with largest GR and smallest M and N
values (Andrade, 2007). The shale point is the orthogonal
projection in the M-N plane of identified shale point in this
z-plot.

We assume lithologic points as particular points in
the M-N plot that represent different rock types. Similar
values of M and N calculated with log readings are
grouped in the M-N plot for each lithology in the logged
interval. Thus, lithologic points can be interpreted as near
the centroid of each cluster formed by points of same
zone. A characteristic of competitive neural network is the
possibility of more than one competitive neuron to be

addressed to the same cluster in the training phase. This
makes its interpretation susceptible to naive errors. We
try to mitigate this kind of misinterpretation, introducing a
competitive network with two competitive layers. The first
competitive layer is training with Kohonen's rules
(Kohonen, 1989). We introduce a new training algorithm
to define the weights associated with the second
competitive layer, which receives as input the weight
matrix of the first trained competitive layer. The neurons
in the last layer compete for the survival. The training
algorithm eliminates neurons in such way that, at the end
of the training phase, remaining in the second competitive
layer only the neurons most activated. The number of
remaining neurons represents, in many cases, the
number of actual clusters in the input data and the
remaining weights are the coordinates of lithologic points
that are located closed to the centroid of actual clusters.
The number of lithologic points in the M-N plot
in
many cases, cannot be interpreted in lithologic terms.
Particularly for shaly rocks, the smallest Euclidian
distance to a fixed point does not indicate lithology.
However, lithologic points exhibit an angular pattern that
is explored. The lithology identification is performed by
the angular competitive neural network, which receives as
input the unity vectors formed by the subtraction of each
lithologic position vector and the shale position vector.
The training set is formed by unity vectors calculated from
the subtraction of each fixed position vector and the shale
position vector.

Results
Synthetic Data

We construct a synthetic data set with three porosity
logs, sonic, neutron porosity and density, as described by
equation 4, which relates log readings with rock physical
properties. We consider only fresh water as interstitial
fluid and shale is taken as pure smectite. We construct
two random vectors, with Guassian distribution (zero
mean and unity variance) to represent the shale volume
(Vi) in the interval [0,0.2] and porosity in the interval
[0,0.25]. These two random vectors are used in equation
5 to calculate matrix porosity parameters for each
reservoir rock. Figure 4 shows an example of M-N plot
generated with this synthetic porosity log readings
considering two zones with calcite and quartz, as matrix
of two reservoir rocks. The large spread of those points in
the M-N plot may confuse the lithology identification. The
rock points are marked by red crosses plotted on the
overlay of the M-N plot in Figure 4.

Our intention is to show the effect of shale
occurrence in the matrix of reservoir rocks producing a
displacement of correspondent points in the M-N plot. The
rock model showed by equation 4 assumes this
displacement, which may be responsible for incorrect
lithology identification, as similar to one produced by
reservoir rocks with more than one mineral in matrix
constitution.
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that visual interpretation does not permit the identification
of these two layers.

Figure 4 — The M-N plot. Red crosses mark two
reservoir rocks (limestone and sandstone) and one
shale layer.

Figure 5 resumes the three steps performed by this
method for lithology identification. The shale point locate
by the competitive network that interprets the z-plot
composed for by M-N and GR is marked by the black
square and is positioned very close to the smectite point.
The log zonation or in simplified form, the location of the
lithologic points in the M-N plot was performed by the
specialized competitive network, with two competitive
layers and we can note the efficiency of proposed training
algorithm to identify the correct number of clusters or rock
types in the M-N plot. The lithologic points are marked by
black stars in Figure 5.

The visual interpretation of those lithologic points
does not help in the lithology identification. It is evident
that the rule of minimum distance is failed and the shale
occurrence is the only responsible by the displacement
from the fixed points in the M-N plot. Here, we can note
the existence of an angular relation or angular pattern
among lithologic and fixed points. This is explored by
angular competitive neural network to perform the correct
lithologic identification, as shown by black circles in
Figure 5.

Real data

We show the behavior of the present method for
lithology identification using actual wireline logging data
from one borehole drilled in Namorado's oil field. We
choose one borehole that crosses a shale layer followed
by a dirty sandstone layer. The core analysis indicates
60% quartz, but the presence of fine-grained minerals
and shale confuse the porosity logs. Figure 6 shows
those data on the overlay of the M-N plot. We can note

1.1
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Figure 5 — The interpreted M-N plot. The shale point is
marked by a black square. The lithologic points are
black stars and lithologies are identified by black circles.

[
|
|
1———9———# 777777 b === +777:777+ 7777777
| | | | | | |
| | | | | | |
I I I I I I I
| | | | | | |
| | | | | | |
I R R e e e
, T i A !
| | | | | | |
o o Bl
0.8,,,J,,,L ,,,,,, L,,,\,,,L,,+,\,,UL ,,,,,,,

I A S v
0.7 E = + :, %ﬁ‘f | +

06F--—---F--7--- ]

Figure 6 — The M-N plot. Red crosses mark two layers
shale and dirty sandstone.

The disambiguation can be visualized in the
interpreted z-plot showed in Figure 7, where the black
square marks the shale and the black star marks the
clean sandstone.
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Figure 7 — The z-plot. Red crosses mark actual data.
The black square marks the shale and the black star

marks the lithologic point (clean sandstone).

The lithologic identification performed by the angular
competitive neural network here presented can be
interpreted as the identification of principal mineral in the
reservoir rock constitution. This work is translated in the
location of correspondent fixed point in the M-N plot, as
shown in Figure 8 by black circle on the quartz point.

Conclusions

We presented a new method for lithology
identification using conventional well log data, which may
be quite different of the conventional methods, permitting
the simultaneous treatment of clean and shaly reservoir
rocks. This method can be used with raw data and real
tima Antn An TIAIND AlthAniah thina mathaAAd a6 haaAAd Al R
N plot, it is not a graphic method. This kind of
presentation is only a topological data arrangement that
permits us to overcome the principal problem with the
clustering or pattern recognizing methods, the correct

ranracAantatinn AanAd  Alaceifinatinn  Af AllictAre in An N

dimensional space. This method presents an intelligent
algorithm as powerful technique to cluster identification
and classification, besides it is presented a new
competitive algorithm and the new angular competitive
neural network, which working together makes possible
the automatic geological interpretation of well log data.

The application of this intelligent algorithm or the
introduced competitive neural networks isolate is not
restrict to formation evaluation or geology and may be
used to solve other problems in geophysics and
petroleum engineering .

Figure 8 — The interpreted M-N plot. The shale point is
marked by a black square. The lithologic point is the
black star and lithology is identified by the black circle.
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