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The well-established crossplot, the M-N plot may
help in the matrix identification for shale free reservoir
rocks. M-N plot involves in the N parameter the neutron
porosity and density log readings and the M parameter is
obtained with sonic and density log readings. M-N plot
assumes the matrix formed by only one mineral and takes
as matrix porosity parameters, the correspondent mineral
physical properties. In a simple geonlonical simnlification,
the matrix of a reservoir rock is composed by only one
mineral. The interpretation of M-N plot consider the
properties of principal mineral as the matrix properties, for
example, porosity parameters for a sandstone matrix is
associated with the physical properties of quartz. This
procedure simplifies the mineral composition of
sandstone to only quartz, ignoring the possibility of any
other minerals occurrence.

For porosity calculation, other important requisite is
to consider the shale occurrence in a reservoir rock,
which has profound impact on porosity values. In this
case, the shale correction requires the information about
matrix porosity parameters. In common circumstances,
fluid parameters can be easily obtained.,

Our goal here is to reduce the possibility of visual
misinterpretation of M-N plot for matrix identification. We
present an intelligent algorithrn that integrates new
competitive neural network architecture with an efficient
evolutionary process in the sense of genetic algorithm
with the aim to produce a more realistic estimate of matrix
porosity parameters

Intelligent algorithms are a large class of computing
techniques, as artificial neural network, evolutionary
computing, and fuzzy inference, mostly used for data
analysis and interpretation. Intelligent algorithms are an
increasingly powerful tool for making breakthroughs in the
science and engineering fields by transforming data into
information and information into knowledae (Nikravesh,
2004). In recent years, some papers have been published
involving the solution of a series of well logging problems

(Aminian & Ameri, 2005;
Jeirani & Mohebbi, 2006) and ger~ntin nlnnvithme Nalas,
Langs. 2005). These techniques aim at the incorporation
of all available logging data to produce improved oil
reserves estimation.

We present an intelligent algorithm  that
determinates the matrix porosity narametars in twn narts,
In the first one, the identification of reservoir layers
present in a well interval is performed by a competitive
neural network with a new learning technique, which is
able to perform an interpretation of the M-N plot. The net
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result is the location of particulars points in the M-N plot
those representing the reservoir rocks present in the well
interval. In the second part, the matrix porosity
parameters are estimated, for each reservoir rock
previously identified by an evolutionary algorithm, inspired
in bacterial reproduction, which takes the triple of matrix
parameters as chromosome and a fitness function based
in the M-N plot interpretation criterion to approximate the
point obtained in the first part. We show the behavior and
evaluate this method with actual well log data from one
borehole in Namorado’s oil field, Campos’s basin, Brazil

Methodology

Conventional reservoir rock model assumes porosity
lna readinas inflilenced bv nranertins of matrix and fliid,
proportional to their relative volumes in the rock
constitution. A common assumption is the use of physical
properties of principal mineral in the rock composition, as
matrix porosity parameters. This assumption considers
the matrix composed by only one mineral, ignoring the
occurrence of any other minerals, for example, the matrix
porosity parameters for sandstone is assumed equal the
physiral nranerties of Anartz,

For common rock forming minerals is well know their
physical properties related with porosity logs, as listed in
Table 1.

Table 1 - Physical properties of common minerals.

Mineral Dm At D vm
Quartz 2.65 55.5  -0.05
Calcite 2.7 47.5 0.00
Dolomite 2.87 43.5 0.04
Anhydrite 2.96 51.8 0.02
Gypsum 2.32 55.7 0.60

For shale free reservoir rocks, this simplification in
thAa maAatriv AanAtibodiAae mwamir uarAavizsa wall AnmA A Al
established method as M-N plot can be used to determine
the principal mineral and consequently, assume its
physical properties as matrix porosity parameters.

The M-N plot

The M-N plot (Burke et al, 1969) uses a
combination of sonic, density and neutron porosity logs
and attempts to remove the effect of porosity on these
measurements. A combination of the sonic and density
measurements is used to define the M parameter, which
is the slope of the curve for each particular lithology in the
sonic-density crossplot that varies slightly among the
three common lithologies of reservoir rocks due the matrix
endpoints. The slope of neutron-density crossplot is

designated as N. Thus, each one rock forming mineral
produces a slightly different value of N and M. Porosity
variations affect both the numerators as well as the
denominators of M and N, making them almost
independent of porosity (Luthi, 2001).

The M and N parameters can be expressed in
metric units as

At,, — At
M=—"—T0003 (1)
Pm — Pw
N = ¢Nw - (PNm (2>
Pm — Pw

In equations (1) and (2), At,, represents the transit
time for fresh water; At,,, the matrix transit time; p,,, the
matrix density; p,, the fresh water density; ¢nw, the
water neutron porosity and ¢y, the matrix neutron
porosity. The M and N values can be obtained with log
readings by replacing the matrix values in the respective
equations by the appropriate log readings.

Some common minerals have well-defined values of
M and N, some of which are listed in Table 2. Those
points are plotted in the M-N plot as fixed points or matrix
reference points, as shown in Figure 1. If a pair of M and
N calculated with log readings in a particular depth of a
borehole are plotted on the overlay of the M-N plot, the
intersection of those M and N defines a depth point in the
M-N plot. The location of depth point with relation to fixed
points may permit simplified lithology identification.

Table 2 — M and N values for common minerals.

Mineral  Composition m N
Quartz SiOs 0.81 0.64
Calcite CaCOs3 0.83 0.59
Dolomite ~ CaMg(CQ3)2 0.78 0.49
Anhydrite  CaSOs 0.70 0.50
Gypsum  CaS0s4.2H,0 1.01 0.30

Clay Minerals
Illite 0.6 0.49
Kaolinite 0.6 0.45
Smectite 0.6 0.50

If the characteristics of actual fluid approximate the
fluid properties used in the M-N plot construction and
there is no evidence of secondary porosity in the reservoir
rock, the location of any depth point in the M-N plot
depends primarily on the matrix characteristics.

The conventional interpretation of M-N plot
considers only minerals as matrix, because they present
constants physical properties and fixed points can be
plotted. For a shale free rock composed by more than one
mineral, there is not fixed point that may help in the
lithology identification and consequently, in the
determinations of matrix porosity parameters. In this case,
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the minerals present in the rock composition define an
annraximated lncatinn far the matrix nnint in the M-N nlnt,
CAr Avamnla A HAintrilkiitian Af nAailnte TnaidAa thAa Aliavd—_
calcite-dolomite triangle indicates the presence of these
components in the rock composition. In this case, the
proportional volume of each mineral, determined by
advance core analysis, is used to calculate the matrix
porosity parameters.
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Figure 1 — The M-N plot.

In general, it is necessary to consider the presence
of shale in the rock composition, which may profoundly
N
plot works only with clean rocks and conventional shale
correction requires the matrix porosity parameters, this
may seem incoherent, reducing the utility of M-N plot for
mineral identification.
We modify the shaly rock model, including the shale
in the matrix constitution. The conventional porosity log
equation is

p= ¢pw + Vshpsh + (1 - ¢ - Vsh)pm (3)

In equation 3, p is neutron porosity, density, or sonic
lnn readina 7. ie the chale vnliime and 4 ic the nnarneity,

n . and n_ are narncitv narametere far chale and m;\friy,
respectively. With the rock model adopted, the porosity
log equation can be expressed as

p=9¢pw+ (1 —PIrpn 4)

In equation 4, the term p,, is the modified matrix
porosity parameter, in the form

N
o Vsh
Pm = G g Pot + ; Vip; ()

In equation 5, V; is the relative volume and p; is the
porosity parameter for one of N minerals in the matrix
constitution.

This rock model considers the shale properties in
the reservoir as equal the properties of neighborhoods
shale layers. In this approach, the visual interpretation of
porosity logs, as shale cut-off and porosity cut-off are
eliminated, with M and N values calculated with raw
logging readings.

This  rock model permits the conventional
interpretation of M-N plot if a fixed point for shale is
located. In other words, if a fixed point for shale can be
located in the M-N plot, the shale has the same hole as
common mineral in the matrix constitution. It is done by a
computer aid interpretation as an intelligent algorithm
using competitive neural network.

Bi-Competitive Neural Network

A common architecture of a competitive neural
network is composed by two layers, the first layer is called
input layer and contains only sensorial units that receive
and pass the input data to the second layer, which is the
processing layer or competitive layer, composed by
competitive neurons. These two layers are full connected
by synaptic weights. The competitive neurons are forced
to compete among them; in such way, that only one
nAatiran (warinnAar nAtiran) otmve antivin Ar nradilinAe A AAA_
null output signal in each time step.

The competitive learning is unsupervised, i.e. during
the training, only input patterns are presented to the
neural network, which adapts the synaptic weights in
order to group the input patterns into clusters with similar
statistical features. A learning rule defines the competition
strategy and the adaptation of synaptic weights (Haykin,
2001). The competitive learning uses the Kohonen rules
(Kohonen, 1989), where the competitive neuron that most
resembles the input vector wins the competition and has
its synaptic weights moved close to the input vector.

The solution of a cluster analysis problem claims for
two answers: the number and real meaning of actual
classes present in the data. Common characteristics of
traditional competitive neural network trained with
Kohonen rules are the possibility of more than one
competitive neuron to be addressed to the same cluster
and the occurrence of a concentration of neurons close to
the center of all clusters. The occurrence of those effects
separately, or in association is dependent of the spread of
Tmrmiit AAata Ar thAa fAvien AfF AlliatAava Aiatvilhaibian Ta A A
dimensional Euclidian space of input data. In may
situations a conventional competitive neural network is
not able to solve a cluster analysis problem.

We introduce the bi-competitive neural network
(Figure 2} and a new training algorithm that make it able
to solve a cluster analysis problem. The bi-competitive
network has two competitive layers that are trained
separately. The first layer (I} receives the input data and
is trained using the Kohonen rules. The second
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competitive layer (ll) receives as input the synaptic
weights of layer |. The same weight matrix is taken as
synaptic weights linking the competitive layers Il and I.
The neurons in the layer || compete for the survival. The

t
the end of the trainina nhase remainina in the laver Il
only the neurons most activated. The number of
remaining neurons represents, in many cases, the
number of actual clusters in the input data.

Input Competitive
laver laver | laver Il

Competitive

Figure 2 - Architecture of bi-competitive neural
network.

Genetic Algorithm

Reproduction is the biological process by which new
individual organisms are produced. The known methods
of reproduction are broadly grouped into two main types:
sexual and asexual.

Our interesting here is in asexual reproduction. In
this case, an individual organism creates a genetically
similar copy of itself without a contribution of genetic
material from another individual. Bacteria divide asexually
via binary fission. Organisms that reproduce through
asexual reproduction tend to grow in number
exponentially. However, they rely on mutation for
variations in their DNA, all members of the species have
similar vilnerahilities  Indeed in an aaaressive amhient,
just one adapted individual originates itself a new adapted
population.

Genetic algorithms are powerful and broadly
applicable stochastic search and optimization techniques
based on principles from reproduction and evolution
theory (Holland, 1975; Romero & Carter, 2001;
Tettamanzi & Tomassini, 2001; Tzeng. 2004). The
genetic algorithm was inspired in biology, particularly in
those biological processes that describe the growth of
populations and the adaptation to their environment:
genetic inheritance and survival of the fittest. The genetic
algorithm acts similarly to the evolutionary cycle, where a
group of individuals or chromosomes is put to develop
through the crossover and mutation operators. Crossover
is the main genetic operator, which does a mixture of

parent chromosomes to generate an offspring. Mutation is
a genetic operator, which produces random changes in
the offspring chromosomes.

The parent population is real-valued and the
chromosomes represent possible solutions to the
problem. A new generation is formed by action of genetic
operators and according to the fitness function, only the
better chromosome in each offspring is permitted to
reproduce. After several generations, the algorithm
converges to the best chromosome, which represents an
optimal solution for a particular problem.

We take the triple (¢, , At,,, dym) Of matrix porosity
narametare far dengitv - anic and neintran  naragity,
respectively, representing the fundamental chromosome
of evolutionary process and a fitness function based in
the M-N plot interpretation to approximate the matrix point
obtained by competitive neural network.

Matrix Porosity Parameters

To consider clean and shaly rocks, we proceed to
shale point identification (Andrade, 2007). After that, we
can eliminate the shale of posterior computation. In the
next steps, we work only with reservoir rocks. The
determination of matrix porosity parameters proceeds
with the identification of matrix points. We assume matrix
points as particular points in the M-N plot that represent
different rock types. Similar values of M and N calculated
with log readings are grouped in the M-N plot for each
lithology in the logged interval. Thus, matrix points can
be interpreted as near the centroid of each cluster formed
by points of same zone.

We define the number and the location of matrix
points in the M-N plot using the bi-competitive neural
network, which assumes the final weights associated with
the winner neuron as the center of a cluster representing
the M and N values associated with a particular matrix
point in the M-N plot. The number and the weights of
remaining neurons in the final stage of bi-competitive
neural network, in many cases, represent the number and
location of matrix points in the M-N plot.

To estimate the matrix porosity parameters, we
introduce the genetic algorithm based on bacteria’s

)
as chromosome unit and use only mutation, as genetic
operator to create the next generation or the offspring
chromosomes. The environment defines the survival
conditions of fittest individual. Here, the fitness function is

N
plot, generated by one offspring chromosome, to the
matrix point. The fittest chromosome is the triple
representing the matrix porosity parameters for each rock
type in the well interval,

In  the asexual reproduction, lake bacteria
reproduction, must exist one chromosome nominated as
progenitor or the ancient chromosome, which is more
adapt to ambient than any other. This chromosome is
responsible for all the next generation. We take as
progenitor the triple (¢ ,At ,¢y) corresponding to the
closest point, in the input data, with each matrix point in
the M-N plot. In a new iteration, an offspring is generated
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by a random alteration of progenitor. The application of
fitness function to this new generation selects a new
progenitor. The generation and evaluation of offspring
continue until a tolerance value for the fitness function is
reached. The last progenitor is taken as matrix porosity
parameters.

Results

Synthetic points in the M-N plot are obtained from
equations (1) e (2), considering the rock model expressed
in equation (4). We present three tests, which results are
shown in Table 3. In Figure 3, we show the M-N plot, with
synthetic M and N pairs marked by red crosses for the
first case of a rock matrix with 80% of quartz. A visual
interpretation of this M-N plot does not indicate a clear
mineral dominating the matrix composition. A black
asterisk indicates the matrix location and a black circle
indicates the M and N pair obtained with the matrix
porosity parameters defined by this method and
presented in Table 3. Notice that shale point is not show
in the next figures.

Table 3 — Estimation of matrix porosity parameters

Matrix Dm At Dum

Calc. 2.60 65.1 0.03

Est. 260 65.1 0.03

40%qtz+40%cal Calc. 2.63 61.9 0.05
+20%sh Est. 263 619 0.05
30%qtz+30%cal+ Calc. 2.71 544 0.03
30%dol+10%sh Est. 2.71 544 0.03

80% qtz+20%sh

In Figure 4, we show the M-N plot, with synthetic M
and N pairs marked by red crosses for the second case of
a rock matrix with 40% of quartz and 40% of calcite. As
the first example, the visual interpretation of this M-N plot
does not indicate a clear mineral dominating the matrix
composition. A black asterisk indicates the matrix location
and a black circle indicates the M and N pair obtained
with the matrix porosity parameters defined by this
method and nresented in Tahle 3,

In Figure 5, we show the M-N plot, with synthetic M
and N pairs marked by red crosses for the second case of
a rock matrix with 20% of quartz, 20% of calcite, and 20%
of dolomite. As the other examples, the visual
interpretation of this M-N plot does not indicate a clear
mineral dominating the matrix composition. A black
asterisk indicates the matrix location and a black circle
indicates the M and N pair obtained with the matrix
porosity parameters defined by this method and
presented in Table 3. Notice that shale point is not show
in Fignre 5,

In Figure 6, we show the M-N plot with actual M and
N pairs marked by red crosses of a well interval in a
borehole drilled in Namorado’s oil field. This particular

data was extract close to the middle of a tick sandstone
layer and the distribution of correspondent points in the
M-N plot occurs around the quartz point. We notice that
matrix porosity parameters estimate by the method here
presented are equal to the quartz.
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Figure 3 - The M-N plot. Red crosses mark a reservoir
rock (80% quartz and 20% shale) and shale. Matrix
point is marked by the black circle.
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Figure 4 — The M-N plot. Red crosses mark a reservoir
rock (40% quartz, 40% clacite and 20% shale) and
shale. Matrix point is marked by the black circle.
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Figure 5 — The M-N plot. Red crosses mark a reservoir
rock (20% quartz, 20% calcite, 20% dolomite, and 10%
shale) and shale. Matrix point is marked by the black
circle.
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Figure 6 — The M-N plot. Red crosses mark actual
values.

Conclusion

A log analysis problem has an iterative nature in its
solution process can be described as extracting
information from logs, calculate and evaluate a rock
property, in some cases, go back to logs or check core

analysis results. Many times, extract information from logs
is not a so frivial problem. Here was presented an
intelligent  algorithm  that produces the  matrix
characterization or estimates the matrix porosity
parameters necessary for porosity calculations. We
show an example of this method in a simple case, where
a visual interpretation validate the results. A better
application will be in cases of more difficult visual
extraction of information from well logs.
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