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ABSTRACT

Seismic imaging in depth is limited by the accuracy of
velocity model estimation. Slope tomography uses the
slowness components and traveltimes of picked reflec-
tion or diffraction events for velocity model building. The
unavoidable data incompleteness requires additional in-
formation to assure stability to inversion. One natural
constraint for ray based tomography is a smooth velo-
city model. We propose a new, reflection-angle-based
kind of smoothness constraint as regularization in slope
tomography and compare its effects to three other, more
conventional constraints. We find the smoothness cons-
traints to have a distinct effect on the velocity model but
a weaker effect on the migrated data. In numerical tests
on synthetic data, the new constraint leads to geologi-
cally more consistent models.

INTRODUCTION

The determination of a macrovelocity model is essen-
tial for time and depth imaging of seismic reflectors in
the earth. Among the many methods that try to to achi-
eve this aim are so-called tomographic methods that are
based on the inversion of traveltimes of seismic reflec-
tion events. One of these is slope tomography, which
uses slowness vector components to improve and sta-
bilize the traveltime inversion. Slope tomography was
initially proposed by (Billette and Lambaré, 1998) as a
robust tomographic method for estimating velocity macro
models from seismic reflection data. They had recog-
nized the potential efficiency of traveltime tomography
(Bishop et al., 1985; Farra and Madariaga, 1988) but
also the difficulties associated with a highly interpreta-
tive picking. The selected events have to be tracked over
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a large extent of the pre-stack data cube, which is quite
difficult for noisy or complex data. The idea is to use lo-
cally coherent events characterized by their slopes in the
pre-stack data volume. Such events can be interpreted
as pairs of ray segments and provide independent infor-
mation about the velocity model. However, the data for
slope tomography are incomplete (Bishop et al., 1985).
Therefore, stability and convergence can only be achie-
ved if additional information is prescribed. These additi-
onal information contains desirable properties for the so-
lution, reducing ambiguity (Menke, 1989). For ray based
inversion, smoothness is a requirement, because rough
models cause the forward problem to break down during
linear iterations. The use of combined smoothness cons-
traints enables an interpretation-oriented inversion while
keeping solutions consistent with the data. We inves-
tigate the effect of different kinds of smoothness cons-
traints in slope tomography. The Marmousoft data set
(Billette et al., 2003) is used for this study. Lateral, verti-
cal and isotropic smoothing constraints are prescribed in
different combinations. Moreover, we propose a structu-
rally motivated smoothing constraint in the direction of a
potential reflector.

METHOD

Slope tomography differs from conventional reflection to-
mography by the data that are used for the inversion (Bil-
lette et al., 2003). Firstly, the traveltimes are picked from
locally coherent events that are interpreted as primary
reflections or diffractions. Secondly, in-line slowness-
vector components of these events, detected in common-
shot or common-receiver gathers, are used in addition to
source and receiver positions and traveltimes. Thus, the
data space is given by

d= [(xs,xT,ss,sT,T”)n]

where x* and x" are the source and receiver positions,
T°" are the traveltimes, and s® and s” are the slowness-
vector projections into the receiver line. Moreover, N is
the number of selected events. Slope tomography also
uses a different model parameterization than conventio-
nal reflection tomography. In 2D, the model to be esti-
mated includes: the parameters describing the velocity
model, p, the scattering-point coordinates, X, the emer-
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gence angles, §° and 4", and the ray traveltimes, 7° e 7".
In other words, the model vector is

m = {p, (X.6°,0",7°,7").}

To solve the inverse problem using linear iterations, an
initial reference model must be given. In this model m,,
ray tracing is performed to calculate the synthetic data
corresponding to equation (1), denoted as d°. The diffe-
rence between the observed and calculated data, d° —
d¢, defines the deviation éd.

This deviation is modeled in linear approximation as
éd = DF(mo)dm , (3)

where DF denotes the approximate operator describing
the direct problem under variation of the reference mo-
del mo. The operator DF(my) is known as the Fréchet
derivative , see (Menke, 1989). The solution of the li-
near system in equation (3) determines a new reference
model

new

m; = mo+Jim. (4)

The process continues iteratively until the norm of the
deviation ||éd|| is smaller than a given tolerance value
(in case of convergence) or until a maximum number
of steps. In this work, we use the standard L, norm
(Menke, 1989).

In our implementation, we construct a model for the square
of the medium velocity, which is represented using the
tensor product of third-order B-splines as

N1 N

p(r1,23) = Ezp“ﬂBa(ﬁfl)Bﬁ(%), (5)

a=13=1

where the functions B, (z;) are the base functions of the
interpolator along x;. Moreover, N; indicates the num-
ber of B-spline nodes in that direction and p** are the
interpolation coefficients. In other words, the coefficients
p“? constitute the actual medium parameters that are to
be estimated by slope tomography.

Regularization

Due to the incompleteness of the data, additional conditi-
ons that take desirable properties of the solution into ac-
count, must be incorporated into the objective function.
One necessary condition requires all model-parameter
perturbations, computed in each linear iteration, to be
small; other conditions are smoothness constraints on
the velocity model. Weak constraints are used to en-
force smoothness of the solution. These constraints are
applied in a least-squares sense at each node of the B-
splines mesh, as indicate below. Several kinds of smo-
othness exist, one for lateral homogeneity, one for verti-
cal homogeneity, one for minimum curvature along each
Cartesian coordinate, and finally the minimum Laplacian,
which minimizes the curvature of the velocity model iso-
tropically. The specification of these constraints requires
the evaluation of first and second partial derivatives of

source receiver

receiver ray

potential reflector scattering point

Figura 1: Position of a potential reflector.

the velocity model with respect to the spatial coordina-
tes. Denoting the spatial derivatives in the z; and x3 di-
rections by D; and D3, these derivatives are computed
in the form

SN o 0 Ba (1)

n L) e x

Diplarws) = DY p* =55 Ba(as)  (6)
a=173=1 1

and correspondingly for the derivatives with respect to
coordinate z3. Standard regularization of the derivatives
along the coordinate directions can be improved by smo-
othing along the reflectors. (Sinoquet, 1993) proposed
to use a priori geological information for this purpose in
reflection tomography. In the same spirit, (Clapp et al.,
2004), who applied reflection tomography in order to bet-
ter flatten post-tomography common-image gathers, poin-
ted out the shortcomings of standard regularization stra-
tegies. To overcome these problems, they proposed to
use a priori information about the reflector dip from previ-
ous migrations to design smoothing operators along the
reflectors. By smoothing the velocity model along the
reflectors, they were able to construct models that were
more geologically reasonable, improved reflector positio-
ning, and led to better focused images.

Actually, the distribution of the scattering points in depth
provides a more natural way to enforce a geologically
meaningful smoothing that does not rely on a priori infor-
mation. Assuming that all events to be used in the tomo-
graphic inversion are reflections, the angle between the
normal to the potential reflector and the vertical direction
is (see Figure 1)
0s +0r

a=—", )
which is available at each iteration of slope tomography.
Using this information, we tried to constrain the velocity
model using the reflector geometry, requiring the model
to be smooth along the tangent to the reflector at each
scattering point. Computing the velocity gradient at the
scattering point, X, we add the regularization constraint

n(e; X)x Vp(X)=0. (8)

This equation constrains the velocity gradient to be per-
pendicular to potential reflectors, thus smoothing the ve-
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Figura 2: Exact Marmousi velocity model.

locity model along them. We denote this smoothing ope-
rator by D,.. In order to limit the increase in the size
of the problem, we apply this constraint to a fraction of
the scattering points. The proposed dip regularization is
different from the approach of (Clapp et al., 2004). In
our approach, the dip information is not obtained from a
previously migrated image, but from ray-tracing in the re-
ference model during the inversion. Thus, the smoothing
operator is updated at each iteration. The so-obtained
dip information can be used for a futher refinement of
the velocity model through residual moveout inversion of
common image gathers. Combining these regularizati-
ons, we use the objective function

®(m;Ai) = [[d— F(m)||3 + Aj[m — molf3

+A7ID? + D3p|i3 + A3|D3pll5 + A3 D3plf3
+A7[D1pll5 + AZ|Dspll3 + A|D.pl3 . (9)

where the X; are Lagrangian multipliers that weight the
contributions of regularization in the objective function.
At each iteration we need to solve the linear system

B DF(mo)
Aol

A (D? + D3)
AoD?
AsD3
AaDy
AsD3
AsD,-

- sd

(=]

im =

oo ocooo

The prescription of A1, A2, A3, A4 and A5 determines the
weight of isotropic curvature smoothing, lateral and ver-
tical curvature smoothing, as well as lateral and vertical
homogeneity, respectively. The value of A\ controls the
degree of smoothing along potential reflectors.

This objective function gives us the flexibility to permit
different assumptions about the velocity model. We test
some of the possible choices and their effect on the es-
timated velocity models in the Numerical Examples sec-
tion below.

NUMERICAL EXAMPLES

Model

Velocity Model

=
o

Depth (km)
o G
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Figura 3: Smooth velocity model computed from the
exact Marmousi model of Figure 2 by Gaussian smo-
othing.

We use the Marmousoft data (Billette et al., 2003) to eva-
luate the effect of regularization constraints in slope to-
mography. These synthetic data are obtained by Born
modeling in a smoothed version of the original Marmousi
model (see Figure 2). The smoothing is done using a

Gaussian filter minimizing with correlation-length 7 = 240 m

(Billette et al., 2003). A correspondingly smoothed mo-
del is depicted in Figure 3. In these synthetic data, 5490
events were selected by an automated picking code (Bil-
lette et al., 2003). Their traveltimes and local slopes
constitute the input data for the stereotomographic inver-
sion in the numerical examples.

Inversion results

Below, we discuss the results of slope tomography using
five kinds of regularization strategies, being (1) isotro-
pic smoothing of the curvature by minimizing the norm
of the Laplacian of the velocity field; (2) anisotropic smo-
othing of the curvature by minimizing curvature indepen-
dently in the lateral and vertical directions; (3) anisotropic
smoothing of the heterogeneity by minimizing the velocity
gradient independently in lateral and vertical directions;
(4) structural smoothing of the heterogeneity by minimi-
zing the velocity gradient along the reflectors; (5) aniso-
tropic and structural smoothing of the heterogeneity by
minimizing the velocity gradient both along the reflectors
and laterally. Our implementation of slope tomography
uses the multigrid approach suggested by (Billette et al.,
2003). The inversion is performed initially on a sparse
B-spline mesh, with 13 x 11 nodes. The nodes are spa-
ced at 1 km laterally and 0.5 km vertically. The result of
this inversion is the initial model for the final inversion on
a dense B-spline mesh, with 61 x 51 nodes. Now, the
nodes are spaced at 0.2 km laterally and 0.1 km verti-
cally. The damping parameter, X is set to 0.025 for all
inversions. We present the results after 30 linear itera-
tions using the dense mesh. In the first inversion, we
only use the Laplacian operator, with A1 = 0.005. All
other \; in equation (10) except for \q are set to zero.
The resulting estimated velocity model is shown in Fi-
gure 4. In the second inversion, the regularization mini-
mizes the lateral and vertical curvatures independently,
with A1 = 0.050 and A2 = 0.010. The estimated velocity
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Figura 4: Velocity model estimated with A, = 0.005.
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Figura 5: Velocity model estimated with A\» = 0.05 and
Az = 0.010.

model is shown in Figure 5. The third inversion mini-
mizes heterogeneity, with Ay = 0.050 and X5 = 0.010.
The resulting velocity model is depicted in Figure 6. The
fourth inversion applies the proposed regularization, with
As = 0.050. The estimated velocity model is shown in Fi-
gure 7. Our last inversion combines smoothing along the
reflectors with a minimization of lateral inhomogeneity,
with A4 = 0.005 and \¢ = 0.0025. The estimated velo-
city model is shown in Figure 8. The five estimated velo-
city models are quite different from the original smoothed
Marmousi velocity model of Figure 3. We can see that
the smoothness constraints have a distinctive effect on
the estimated velocity models. The most obvious diffe-
rences of the models occur in the bottom part where the
data coverage is poorer. The curvature regularizations
(Figures 4 and 5) tend to concentrate the high-velocity
zone in the center of the model. The model in Figure 5
has more lateral smoothness than all the others. The in-
versions using gradient constraints (Figures 6, 7, and 8)
distribute the high velocity over the whole model. They
recover models that are more similar to the smoothed
model of Figure 3 than the inversions using curvature
restraints. The inversions that try to incorporate structu-
ral information (Figures 7 and 8) seem to best recons-
truct some details of the smoothed model, like the higher
velocity at x = 7.2 km and z = 1.6 km, the lower velocity
atz = 6.8 km and z = 2.0 km, or even the slightly incre-
ased velocity at z = 2.6 km and z = 1.6 km. Note that
no inversion can be expected to recover the model below
about z = 2.2 km, because the ray coverage is too poor.

Prestack migration
As the next step, we compare the migrated sections ob-
tained from depth migrating the Marmousoft data using

Velocity Model

Depth (km)

3
lmie

Figura 6: Velocity model estimated with A\, = 0.050 and
A5 = 0.010.

Velocity Model

Depth (km)
O
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Figura 7: Velocity model estimated with A¢ = 0.050.

Velocity Model

Depth (km)
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Figura 8: Velocity model estimated with A, = 0.005 and
Xs = 0.0025.

the velocity models estimated above. For comparison,
we also show the migration result using the smoothed
velocity model (see Figure 9). For the purpose of depth
migration, we sampled the velocity models on a regular
mesh with a grid spacing of 12.5 m. The resulting mi-
grated images are depicted in Figures 10 through 14.

The high quality of the upper part of all migrated images
confirms the quality of velocity model inversion by slope
tomography. Where high ray coverage is achieved, the
recovered model is very good. In these regions, the par-
ticular kind of regularization has not much influence on
the inversion. On the other hand, in regions of low ray
coverage, different regularizations lead to different mo-
dels and, thus, to differences in the migrated images.
The most dramatic difference between the images can
be seen in the lower right corner. Clearly, the failure of
the curvature constraints to yield high velocity in that re-
gion leads to a major pull-up of the reflectors (Figures 10
and 11). The migrated images obtained from the gradi-
ent constraints (Figures 12, 13 and 14) look much better.
The left salt intrusion is almost perfectly positioned by all
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Figura 9: Post-migration stack for the smoothed velocity
model in Figure 3.
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Figura 10: Post-migration stack for the estimated velocity
model in Figure 4.
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Figura 11: Post-migration stack for the estimated velocity
model in Figure 5.
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Figura 12: Post-migration stack for the estimated velocity
model in Figure 6.
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Figura 13: Post-migration stack for the estimated velocity
model in Figure 7.
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Figura 14: Post-migration stack for the estimated velocity
model in Figure 8.
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three of them. Even the right salt intrusion looks pretty
similar to what it should be. Again, please note that at
the borders of the model, ray coverage is close to zero,
so that independently of the chosen regularization, there
is no way for the inversion to recover correct velocities
there. Actually, the last three images present only very
subtle differences in the continuity of some reflectors like
the anticlines in the center of the image or the horizontal
reflector above the reservoir. The reservoir itself seems
positioned best in the two last images (Figures 13, and
14) that use the structural constraints. The similarity of
the images even in the lower part contrasts with the dif-
ferences of the velocity models estimated by slope tomo-
graphy. This is a clear evidence of nonuniqueness in the
inversion on one hand, and of the tolerance of migration
to perturbation in the velocity model on the other hand.
It is in these regions of nonuniqueness where regulariza-
tion has its main effect.

CONCLUSIONS

In this paper, we have proposed a new smoothness cons-
traint for slope tomography that minimizes the velocity
gradient in the dip direction of a possibly present reflector
at an image point. This potential dip direction can be es-
timated as the normal to the half-angle direction between
the ray branches that connect sources and receivers to
the image point. To evaluate the quality of the propo-
sed constraint, we have implemented and tested a set of
different types of smoothness constraints in slope tomo-
graphy. The effect of these constraints on the estimated
velocity model and the corresponding seismic image was
investigated with the help of numerical examples using
the Marmousoft data set. We found a clear effect of the
smoothness constraints in the estimated velocity model
and a less distinctive effect on the seismic imaging. In
our numerical tests, pure curvature constraints produ-
ced worse velocity models than gradient constraints. The
proposed gradient constraint in the reflector-dip direction
showed a desirable behaviour. On its own or in combina-
tion with other gradient constraints, it helped to improve
the obtained velocity model in areas of reduced ray co-
verage. Our numerical results also indicate that the final
depth-migrated images using these models may be less
sensitive to the smoothness constraints than the models
themselves. Not all the differences in the models actu-
ally led to differences in the final depth-migrated images.
The reason is that the lower the coverage with reflec-
tion events, the stronger is the dependence of the qua-
lity of the inverted velocity model on the chosen type of
smoothness constraints used to stabilize the slope tomo-
graphy. Therefore, the most visible model differences will
generally occur where few or no events need to be ima-
ged. Moreover, since ray coverage generally decreases
with depth, the influence of regularization increases with
depth. Therefore, the final depth-migrated images will be
more prone to show differences due to different regulari-
zations at greater depth.
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