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ABSTRACT

As exploration targets have gotten deeper, cable lengths
have increased accordingly, making the conventional
two term hyperbolic traveltime approximation produce in-
creasingly erroneous traveltimes. To overcome this prob-
lem, many traveltime formulas were proposed in the liter-
ature that provide approximations of different quality. In
this paper, we give an overview over a number of those
approximations and compare their quality. Moreover, we
propose some new traveltime approximations based on
the approximations found in the literature. The main ad-
vantage of our approximations is that some of them are
have rather simple analytic expressions that makes them
easy to use, while achieving the same quality as the bet-
ter of the established formulas. Moreover, we derive an-
other traveltime approximation based on a more recent
approximation for the phase velocity.

INTRODUCTION

Traveltime approximations play a key hole in the process-
ing of reflection data. They are used in, for example,
migration (Alkhalifah and Larner, 1994; Vestrum et al.,
1999; Mukherjee et al., 2001), moveout correction and
velocity analysis (Tsvankin and Thomsen, 1994; Alkhal-
ifah and Tsvankin, 1995; Fomel, 2003) and remigration
(Fomel, 1994; Hubral et al., 1996; Schleicher and Aleixo,
2007).

Various authors proposed a shifted-hyperbola approx-
imation (Malovichko, 1978; Claerbout, 1987; Castle,
1994). This equation describes a hyperbola that is sym-
metric about the t-axis and has asymptotes that intersect
the time axis z = 0 at a time t = 7, that is different from
the zero-offset traveltime 7. The shifted hyperbola pro-
posed by (Claerbout, 1987) contains a free parameter,
called a, that can be used to find the best fitting travel-
time approximation. The shifted hyperbola’s parameter
can be related to the anisotropy parameter n (Siligi and
Bousquié, 2000; Ursin and Stovas, 2006), generating a
VTl approximation for the traveltime.

However, for a homogeneous transversely isotropic

medium with a vertical symmetry axis (a VTl medium)
the hyperbolic approximation is only valid for small off-
sets, and the velocity coefficient is an NMO velocity
that differs from the vertical velocity (Thomsen, 1986).
Tsvankin and Thomsen (1994) give a forth-order ap-
proximation, but this equation rapidly loses accuracy
with increasing offset. Alternatively, they proposed a
continued-fraction approximation, that is valid for long
offsets (Tsvankin and Thomsen, 1994; Alkhalifah and
Tsvankin, 1995),
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Everywhere in this paper, we use the normalized half-
offset, * = 2h/Tovnmo, and the normalized traveltime

t(z) = 7(x)/70.

Using another methodology, Stovas and Ursin (2004) de-
rive a different continued-fraction approximation for the
traveltime function,

Gzt

2 _ 2_7
) =142 - i

2)
where G is a parameter that depends of the anisotropic
parameters ¢ and 4. It has the form
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where 7, is vertical P-wave velocity over vertical S-wave
velocity. Note, however, that this approximation is only
valid for short and intermediate offsets.

Zhang and Uren (2001) observed that the ray velocity in
general transversely isotropic (Tl) media can be approx-
imated by a simple equation. Based on this equation,
they provide a traveltime approximation for P-waves in
homogeneous Tl media as
(o) = 5 [14+2%/Q + /(T +22/QF + 1427/q)

(3)
where Q@ = 1 + 25¢. They give no rule for how the
anisotropy parameter A depends on the actual medium
parameters.

Fomel (2004 ) provides a anelliptic approximations for gP
velocities in VTI media. This is a long offset approxima-
tion for traveltime function in VTl media,
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where t7(z) = 1 +2%/Q and R = 165(1 +1)/Q. Note
that ¢2 (z) is the hyperbolic part of equation (4), however
using the horizontal velocity v, = vnmo+/1 + 27 rather
than the NMO velocity. An approximation of similar qual-
ity was obtained by Fomel and Stovas (2007).
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The shifted hyperbola has the general form
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Several different values for parameter S have been pro-
posed in the literature. Malovichko (1978) considered
a layered medium and expressed the parameter S as
that S = pua/p3, where p; is the jth velocity momen-
tum. Claerbout (1987) suggests to use a free parameter
a =1/(1 = S) in the shifted hyperbola to fit the approxi-
mation to the observed traveltime. He gives no interpre-
tation of a in terms of medium parameters. In the shifted
hyperbola of Castle (1994), S is no longer a constant but
is allowed to vary with offset, i.e.,
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For VTI media, Siligi and Bousquié (2000) and Ursin and
Stovas (2006) expressed the parameter S as S = 8n +1.

The nonhyperbolic moveout equations for VTI media ex-
pressed in terms of V..., and 5 can be also applied to
a horizontal orthorhombic layer by making both parame-
ters functions of azimuth (Xu et al., 2003). These param-
eters are given by (Xu et al., 2003)
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where « is the source-to-receiver azimuth with respect to
the aquisition frame, and ¢ is the azimuth of the [z1, 3]
symmetry plane of the orthorhombic medium (assuming
that one of the symmetry planes is horizontal) and pa-
rameters (M, @, 7@ V1 " and V2, are given in
Grechka and Tsvankin (1999).
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Using 1 («) from equation (7) in the traveltime approxima-
tion (1), it becomes (Vasconcelos and Tsvankin, 2004)
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While equation (6) for the NMO ellipse is exact even for
arbitrary anisotropy and heterogeneity, equation (7) is
based on the weak-anistropy approximation for a single
orthorhombic layer. Vasconcelos and Tsvankin (2004)
found that equation (7) remains suffciently accurate for
a stack of horizontal orthorhombic layers with a uniform
orientation of the vertical symmetry planes.

Correspondingly, Elapavuluri and Bancroft (2006) ex-
tended the shifted hyperbola traveltime approximation to
orthorhombic media. They propose to use for parameter
S the value S = 1 + 4n, where 7 is given in equation (7).

In this paper, we give an overview over a collection
of traveltime approximations found in the literature and
compare their quality. Moreover, we propose some new
traveltime approximations based on the approximations
found in the literature. The main advantage of our ap-
proximations is that some of them are have rather simple
analytic expressions that makes them easy to use, while
achieving the same quality as the better of the estab-
lished formulas.

NEW TRAVELTIME APPROXIMATIONS

In this section, we study a few additional traveltime ap-
proximations. Most of them are obtained by further ap-
proximation of one or several of the above formulas,
mainly the one of Fomel (2004). Others are the result
of adaptations that are based on the numerical experi-
ments.

Different expressions for the traveltimes can be obtained
from differently grouping terms before approximating the
square roots in the above formulas. For small values of
¢, we have up to the first order /1 + e~ 1+ ¢/2.

After algebraic calculations we can identify a class of
good approximations. All approximations in this class
have the form

t*(z) ~ th(z) + Bi(n) 2/t (), (12)

where the factor B;(n) can be represented as

Bi(n) = 2n/Q,

Bx(n) = 2n/(1+n)Q,

Bs(n) = 2n/(1+7)% (13)
Bi(n) = 2n/Q%

Bs(n) = 8n(1+n)/5Q.

Another class of approximations has the form
t(z) & tn(z) + Ai(n) 2 /th (x). (14)

Depending on the approximation involved, the factor
Ai(n) relates to 5 through one of the following expres-
sions:

m = n/Q

m = n/0+nQ,

m = n/Q%

As(n) = n/(L+n), (15)
As(n) = (2n/Qv/1+n/3+4n),

As(n) = 2n/Q\/(1+n)(3+4n),

() = 2n/QV3+4n,

(m) = 4n(1+n/5Q).
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Figure 1: Relative error of VTI traveltime approximations
(1) [TsTh 94], (2) [StUr 04], (3) [ZhUr01], and (4) [Fo 04],
and shifted hyperbola (5) with S = S(z) [Castle 94] and
S =1+ 8y [SiBo 00].
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Figure 2: Relative error of VTI traveltime approximations
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NUMERICAL COMPARISONS

In this section, we compare the above VTI traveltime
approximations for a homogeneous VTI layer above a
horizontal reflector with the exact traveltime. Moreover,
we compare the corresponding orthorhombic approxima-
tions for a homogeneous orthorhombic layer to that of
Vasconcelos and Tsvankin (2004) (equation 11). Since
we are comparing normalized traveltimes, the compari-
son is valid for arbitrary reflector depth and NMO veloc-
ity.

VTI media

The VTl medium used for the tests is the Greenhorn
shale (Jones and Wang, 1981), the elastic parameters
of which are i.e., c11 = 14.47 km?/s?, ¢33 = 9.57 km?/s2,
c13 = 4.51 km?/s?, and cs5 = 2.28 km?/s?, which were
also used by Fomel (2004). In this medium, we have
¢ = 0.2560, § = —0.0505 and n = 0.3409.

Figure 1 shows the relative error between the traveltime
approximations (1)—(5) and the exact traveltime. For ap-
proximation (3), we used A = 27, which turns expres-
sions (3) and (4) to be identical after approximation of
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Figure 3: Relative error of VTI traveltime approximations
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Figure 4: Relative error of shifted hyperbola approxima-
tions in VTl media, with S = S(x) [Castle 94], S = 1 + 87
[SiBo 00], and new shifted hyperbola approximations with
S=1+43pandS = (1-7/8/5) "

the square roots. We see that approximation (4) is the
best of these, with its error never exceeding 4% in the de-
picted offset range between 0 and 3. In our experiments,
the approximation of Fomel and Stovas (2007) produced
indistinguishable results from that of Fomel (2004). The
second-best is approximation (1) with a relative error be-
low 6%. The errors of the other approximation exceeds
6% for rather small offsets.

In Figure 2 we present the approximations of the type
t(x) = tn(x)+ Ai(n) £ /3 (x). Again, all of these approx-
imations are rather accurate. None of them exceeds a
relative error of 5% in the chosen range of offsets. More-
over, these approximations possess quite simple expres-
sions that may be advantageous for theoretical consid-
erations. The best of these approximations with a maxi-
mum error of about 2.5% is the one given in As(7).

Figure 3 depicts the approximations of the type t?(x) ~
t2(x) + Bi(n) %/t (x). Note that the axes are the same
as in Figure 1. As we can see, these are rather accurate
approximations. None of these approximations exceeds
a relative error of 5%, the best one being equation for
Bs(n), the error of which remains below 3%.
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Figure 5: Maximum relative error of (4) [Fo 04], (1)
[TsTh 94], shifted hyperbola approximations with S =
S(z) [Castle 94], S = 1 + 8y [SiBo 00], and new shifted
hyperbola approximations with S = 1+ 3n and S =
(1-17/8y/7) " " in VTl media.
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Figure 6: Maximum relative error of VTI traveltime ap-
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proximations of the type

In Figure 4 we compare the shifted hyperbola approxi-
mations from the literature with the ones obtained with
modified expressions for S. Our tests indicated that the
choices S = 1+ 3pand S = (1 - Z,/) ! yield highly
accurate traveltime approximations, in this example with
a maximum error below 2%.

In Figures 5-7 we compare the maximum relative error
of these traveltime approximations in the offset range
[0, 3] under variation of the parameter 7. Figure5 shows
the comparison of the standard traveltime approxima-
tions (1)—(5), as well as the shifted hyperbola approxi-
mation using S = 1+ 3p and S = (1 - 7/8,/7). We
observe that the standard shifted hyperbola approxima-
tions are not very accurate, but the formulas of Tsvankin
and Thomsen (1994) and Fomel (2004), as well as the
shifted hyperbolas with the new values for S produce rel-
atively small maximum errors.

Figure 6 depicts the corresponding errors for the travel-
time approximations of the type (14). In this figure, we
observe that all these approximations have a maximum
error of about 5% for all values of . The maximum er-
rors of approximations A2(n), As(n) and As(n) are al-
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Figure 7: Maximum relative error of VTI traveltime ap-
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Figure 8: Relative error of orthorhombic traveltime ap-
2
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proximations of the type @)

most completely constant. Approximations A1 (1), A4(n),
As(n) and Az(n) have slightly decreasing maximum er-
rors for increasing 1. The best approximation for larger 7
is approximation As (7).

Figure 7 allows to draw almost the same conclusions
about the approximations of type (12). We observe
that all maximum errors are close to 5%. Approxima-
tion Bz(n) has practically constant error. Approxima-
tions Bi(n), Bs(n) and Bs(n) have slightly decreasing
errors. The best approximation for larger » is approxima-
tion Bs(n).

Orthorhombic media

In Figure 8 we present the approximations of the type
t(x) ~ tn(z) + Ai(n) 22/t (z) for orthorhombic media.
Again, all of these approximations are rather accurate.
None of them exceeds a relative error of 0.5% com-
pared with approximation (11) in the chosen range of
offsets. Moreover, these approximations possess quite
simple expressions that may be advantageous for theo-
retical considerations. The best of these approximations
with @ maximum error of about 0.1% compared with ap-
proximation (11) is the one givenin As(7n).
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Figure 9: Relative error of orthorhombic traveltime ap-
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Figure 10: Relative error of shifted hyperbola approxima-
tions with S = S(z) [Castle 94], S = 1 + 8y [SiBo 00],
S =1+ 4n [EIBa 06], and new shifted hyperbola approx-
imations with S = 1+ 3p and S = (1 - 7/8,/7) ', in
orthorhombic media.

Figure 9 depicts the approximations of the type t2(z) ~
t2 (z)+Bi(n) 2 /t2 (z). None of these approximations ex-
ceeds a relative error of 0.4% compared with approxima-
tion (11), the best one being equation for Bz (), the error
of which remains below 0.1% compared with approxima-
tion (11).

In Figure 10 we compare the shifted hyperbola approx-
imations from the literature with the ones obtained with
modified expressions for S. Our tests indicated that the
choices S = 1 +4pand S = (1 - Z,/7) ! yield highly
accurate traveltime approximations, in this example with
a maximum error below 0.5% compared with approxima-
tion (11).

CONCLUSION

Accurate traveltime approximations for large offsets are
very important for many tasks of seismic processing. The
conventional hyperbolic approximation, which is still used
by many processing algorithms for moveout correction,
time migration, multiple attenuation and velocity analysis,
is inaccurate as soon as anisotropy, wave-mode conver-

sions or significant medium heterogeneity are involved.

Many different formulas to approximate far-offset travel-
times have been proposed in the literature Tsvankin and
Thomsen (1994) and Fomel (2004). Most of these are
rather complicated algebraic expressions that are hard
to use.

In this paper, we have studied the quality of several
of these approximations for a homogeneous VTI or or-
thorhombic medium above a horizontal reflector. More-
over, by further approximation of the formulas from the
literature, as well as by combining some of their prop-
erties, we have presented a number of new traveltime
approximations.

Our numerical comparisons show that it is possible to
find traveltime formulas of a much simpler type that pro-
vide equal or even better approximations to the true trav-
eltime than those proposed in the literature. The formu-
las that provided the best approximations to the true trav-
eltime in a homogeneous VTl medium are the shifted hy-
perbola with a different choice for the free parameter and
the hyperbolic traveltime with an additional, rather simple
correction term.
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