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ABSTRACT

In this paper we propose two novel solutions for the two
way wave equation for reverse time migration. The first
one is an interpolation procedure which is based on the
exact solutions of the wave equation for the constant ve-
locity case. The time advanced wavefields for several
reference velocities are computed in the Fourier domain
and then interpolated in the space domain. Next, we pro-
pose a Fourier finite difference method (FFD) which com-
bines the spectral method and a finite difference solution
which is similar to the FFD method used for the one way
wave equation. In the numerical examples we show their
applicability and robustness and conclude that the FFD
method is equivalent to the multiply velocity method but
is significantly less expensive.

INTRODUCTION

Reverse time migration (RTM), using the two-way acous-
tic wave equation is not a new concept. It was intro-
duced in the late 1970’s ((Hemon, 1978)). But despite
its advantages in depth imaging ((Baysal et al., 1983),
(Whitmore, 1983), (McMechan, 1983), (Loewenthal and
Mufti, 1983)) it was not used in practice due its high com-
putational requirements. Now, computer technology has
improved and 3D prestack RTM is being used to address
the imaging challenges posed by sub salt and other com-
plex subsurface targets ((Dussaud et al., 2008)).

By using the full wave equation, RTM implicitly includes
multiple arrival paths and has no dip limitation, enabling
the imaging of complex reflectors. RTM images are formed
by crosscorrelating the source wavefield and the receiver
wavefields after forward and reverse time propagation,
respectively at each time step. While RTM is now com-
putationally feasible it is still expensive. One reason is
that the most common implementations use small time
steps to avoid numerical instability and reduce disper-
sion. However, many new algorithms are being devel-

oped to overcome this problem. A two-step marching
method was introduced by (Soubaras and Zhang, 2008)
which allows a large extrapolation time. (Zhang and Zhang,
2009) proposed a one-step extrapolation method which
is implemented based on the optimized separable ap-
proximation (OSA) ((Song, 2001)). (Pestana and Stoffa,
2009) introduced RTM using recursive time stepping based
on the Rapid expansion method (REM) ((Tal-Ezer et al.,
1987)).

In this paper we propose two novel solutions for the time
stepping problem. The first is an interpolation procedure
which uses different velocities and is based on the exact
solution of the wave equation for the constant velocity
case. These time advanced wave fields are computed in
the Fourier domain and then interpolated in the space
domain. Next, we propose a Fourier finite difference
method (FFD) for the two way wave equation. The idea
is almost the same one proposed by (Song and Fomel,
2010), but the derivation of the method and its implemen-
tation are completely different. This method combines
the spectral method and finite differences together and
is similar to the method of (Ristow and Ruhl, 1994) for
one way wave equations.

We present the first prestack RTM results obtained by the
proposed methods using the Marmousi synthetic data as
an example. The numerical results show that the pro-
posed methods have the ability to image steeply dipping
reflectors and complex structures using a larger time step
than is commonly used in finite-difference schemes. Fur-
ther, we show that the FFD method is equivalent to the
multiple velocity method but is significantly less expen-
sive.

THEORY AND METHOD

We consider the following acoustic wave equation:

∂2P (x, t)
∂t2

= −L2P (x, t) (1)

where −L2 = v2(x)∇2, v(x) is the velocity of propa-
gation, vector position defined by (x) = (x, y, z), and

∇2 =
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
is the Laplacian operator in

Cartesian coordinates.

With the initial conditions P (x, t = 0) = P0 and ∂P (x,t)
∂t

∣∣
t=0

=

Ṗ0 , the formal solution of the wave equation ((Pestana
and Stoffa, 2009)) is

P (x, t+ ∆t) + P (x, t−∆t) = 2 cos(L∆t)P (x, t) (2)
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.

For variable media, we propose to approximate the co-
sine term in equation (2) as:

cos(L∆t) ≈
N∑
n=1

an(v) bn(k) (3)

where an(v) and bn(k) are real functions of velocity and
wavenumber, respectively. The function an(v) is a spatial
function and it is computed using optimal reference ve-
locities: here we used the same procedure proposed by
(Bagaini et al., 1995) to estimate in the interval [vm, vM ]
(where vm and vM are the minimum and the maximum
velocity values of the entire field). The optimal reference
velocities (v1, . . . , vN ) are computed using the statistical
entropy of the velocity distribution. Each weighting func-
tion for each reference velocity (an(v(x)) is computed
during the migration procedure.

Considering the representation of the cosine function given
by (3), the time wave propagation can be performed in
the following way:

P (x, t+∆t)+P (x, t−∆t) = 2

[ N∑
n=1

an(v)F−1bn(k)

]
FP (x, t)

(4)
Considering the 2D case, each bn(k) is given by bn(k) =
cos(vn

√
k2
x + k2

z ∆t) ((Pestana and Stoffa, 2009)) and for
each marching time step, this method requires one fast
Fourier transform (FFT) and N inverse fast Fourier trans-
forms (IFFT).

Fourier Finite Difference Method

Now we rewrite the equation (1) in the following form:

P (x, t+ ∆t) +P (x, t−∆t) = cos(L∆t)sec(L0∆t)T (x, t)
(5)

where we have introduced the temporary wavefield T (x, t),
that is given by:

T (x, t) = 2 cos(L0∆t)P (x, t) (6)

with L2
0 = − v2

0 ∇2 and v0 is the minimum velocity of the
media.

Using Taylor series, we can approximate both the cos(L∆t)
and sec(L0∆t) functions and substituting these approxi-
mations into equation (5) results in:

P (x, t+ ∆t) + P (x, t−∆t) =
[
1 + c2(x)K2∆t2

+ c4(x)K4∆t4 + c6(x)K6∆t6 + ...
]
T (x, t) (7)

where K =
√
−∇2 or in the Fourier domain we have

K2 = k2
x + k2

z

Thus the equation (7) is rewritten as

P (x, t+ ∆t) = T (x, t)− P (x, t−∆t) +
[
c2(x)K2∆t2

+ c4(x)K4 ∆t4 + ...
]
T (x, t) (8)

with the c coefficients given by: c2(x) =
v20
2

{
1− α2(x)

}
,

c4(x) =
v40
24

{
5 − 6α2(x) + α4(x)

}
, c6(x) =

v60
720

{
61 −

75α2(x) + 15α4(x)− α6(x)
}

, and α(x) = v(x)
v0

.

We notice that for α(x) = 1 all coefficients are zero and
we recover the exact solution of the wave wave for the
constant velocity case.

We’d like also to mention that a similar approach was
proposed by (Song and Fomel, 2010) and differs mainly
in the weighting coefficients derived for the finite differ-
ence operators.

FOURIER FINITE-DIFFERENCE IMPLEMENTATION

The equation (8) can be implemented in the Fourier do-
main and space domain in two steps as in the Fourier fi-
nite difference method introduced by ((Ristow and Ruhl,
1994)) for one-way depth extrapolation. First, the tempo-
rary field T (x, t) is computed in the Fourier domain. We
need to transform P (x, t) to P̂ (k, t) using a fast Fourier
algorithm (FFT). Then we multiply P̂ (k, t) by cos(L0∆t)
to get T̂ (k, t) and transform to T (x, t) by inverse FFT. We
can apply (in the space domain) any conventional finite-
difference scheme to compute P (x, t+ ∆t)

Considering only the first order velocity correction term
on the RHS of equation (8) we have:

P (x, t+∆t) = T (x, t)−P (x, t−∆t)− c2(x)∆t2∇2T (x, t)
(9)

where ∇2 is the Laplacian operator and it can be com-
puted using 4th or higher order finite-difference schemes
and c2(x) is the perturbation velocity computed for each
spatial position as given before.

RESULTS

We implemented the reverse time migration method us-
ing the interpolation and the FFD methods proposed here
to migrate the Marmousi dataset. In the velocity model
the velocities vary from 1500 m/s to 5500 m/s and the
grid size for the migration result is ∆x = 25m and ∆z =
8m. The methods are implemented in the Fourier do-
main and to avoid instability problems, we consider r =
v∆t
∆x

< 1√
1+α2

, where α = ∆x/∆z. In the interpolation

results presented in Figure 1, we show that using 5 to
7 velocities as determined using (Bagaini et al., 1995)’s
procedure produced a very good image of the Marmousi
model. (For all results as part of the imaging condition we
applied a Laplacian filter do remove the low wavenumber
artifacts.) This method proved quite expensive for this
example, because we needed 5 to 7 Fourier transforms
for each time step, to obtain a reasonable result. How-
ever, using just one forward and back Fourier transform
for each time step and with the additional velocity correc-
tion proposed, and implemented via finite differences, we
were able to obtain a very good results for the Marmousi
model (Figure 2).
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Figure 1: (a); Pre-stack RTM results using the interpola-
tion method for Marmousi dataset. Migration result using
3 velocities (upper left), 5 velocities (lower left), 7 veloci-
ties (upper right) and 10 velocities (lower right)

CONCLUSIONS

Reverse time prestack depth migration is an important
solution for the most complex seismic imaging challenges,
particularly sub salt areas where other imaging techniques
may fail to provide acceptable seismic images. In this pa-
per, two novel methods are proposed for prestack RTM.

For variable velocity media we proposed the spatial in-
terpolation of exact wave equation solutions for constant
velocity time extrapolations computed in the Fourier do-
main. However, for complex structures we need a high
number of reference velocities to obtain reasonable seis-
mic images. To overcome this increase in computation
burden, we also proposed a second method which is a
FFD solution for the two wave equation. The results ob-
tained with the Marmousi dataset demonstrated its appli-
cability and robustness.
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Figure 2: Marmousi pre-stack result using the FFD re-
verse time migration with the first order velocity correc-
tion term.
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