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Resumo

Markov chain Monte Carlo methods (McMC) have become
popular with solving inverse problems in order to derive
estimates of original parameters. This methods are
characterized by incorporates prior knowledge about the
unknown parameters as well as informations about the
observations. In this sense, we numerically study
the Random Walk (RW) and Differential Evolution (DE)
variations of Metropolis algorithm in the context of seismic
modeling considering the viscoelastic wave equation. The
algorithm is tested for the data from 1987 Superstition
Hills earthquake recorded at the Wildlife Site. The results
show the effectiveness and accuracy of the algorithms with
emphasis to DE-McMC which reached convergence earlier
compared to RW.

Introduction

The purpose of this paper is to describe a methodology
to compute the probability of the onset of soil properties
at a given depth. The 1D viscoelastic wave equation
based a smooth hysteretic model is used to characterize
the behavior of the soil deposit under random seismic
loading (shear modulus reduction and damping ratio)
within a Bayesian framework. The Metropolis algorithm
and its variants have been widely used in the Bayesian
analysis of stochastic inverse problems. Due to the
complexity of the modeled systems, the analytical solution
for the posterior distribution function may not exist.
This leads to the use of numerical methods, such as
Markov chain Monte Carlo techniques (McMC), to obtain
approximate solutions for the posterior distribution function.
The Bayesian framework allows quantifying the added
value of information from several sources, while McMC
methods allows sampling from the posterior distribution in
a computational framework. In this paper, a Random Walk
Metropolis (RW) (Sherlock et al., 2010) and a Differential
Evaluation Markov Chain Monte Carlo (DE) method (Price
et al., 2006) are used to approximate the posterior function
and update model.

In the classic version of RW algorithm the new proposal
is drawn from a perturbation of the current point of the
chain (more details will furnished at section). Often,
the a priori knowledge about the target distribution
is quite limited and the selection and tuning of the

proposal distribution may be the bottleneck of the MCMC
methods, since they can be inefficient. To overcome
this obstacle, a Markov chain Monte Carlo version of the
genetic algorithm differential evolution was proposed by
Ter Braak (2005), in which multiple chains are run in
parallel, to solve the problem of choosing an appropriate
scale and orientation for the jumping distribution. The
DE jumps are a fixed multiple of the differences of
two current random parameter vectors of the chains
(population). Recently, Gao et al. (2016) propose a
new global optimization algorithm by incorporating a
new multimutation scheme into a differential evolution
algorithm in seismic inversion problems. Yu et al. (2014)
applied the DE for earthquake dislocation source model
from the observed crustal deformation field that is a
nonlinear multimodal problem. Vrugt (2016) proposed
an enhanced version of DE, entitled Differential Evolution
Adaptive Metropolis algorithm (DREAM), with self-adaptive
randomised subspace sampling.

In practice the DE algorithm estimate the parameters
of the geophysical model from a Bayesian structure.
This estimate depends on a priori information obtained
from data and physics of the problem to then estimate
a posteriori probability in the model space, which will be
the solution to the inverse problem. An important detail
is that the DE algorithm do not require knowledge of the
posterior probability form, which can be very complicated.
Some other advantages can be publicized by this global
methods. First, DE is simple to implement and adapt to the
inverse problem and this just involves selection for direct
modeling. A priori constraints usually define the region
of model space to be searched and are explicitly imposed
during model selection. Second, the resulting uncertainties
may be desirable for the model and summarize the range
of models that fit the data and that can be incorporated into
the survey. Lastly, the model can be oversized, which is
desirable to establish limits that affect the range of such
models.

The DE algorithm comes from a new class of global
optimization methods that can be used to explore measure
motions at the ground surface and within the soil profile.
However, this issue of the soil dynamic properties was
not properly explored by DE algorithm. We focus in
the application of DE to estimate the shear velocity
structure from 1D viscoelastic shear-wave propagation
with a viscous damping model in order to obtain shear
displacement on the surface, density, shear modulus and
the viscous damping coefficient. Once the inversion is
performed, we will compare the results with traditional RW
and clearly identify the advantages of this technique for
model problem. Random method is applied here using
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case histories Wildlife Site, California, seismic vertical
arrays considering Superstition Hills recordings of 1987
(Youd & Holzer, 1994). These records were of interest due
to liquefaction of the leading site possibly high variability
from the data and creating a nonlinear soil behavior
interpreted from the recordings.

1D viscoelastic wave equation

Following notation from Oliveira et al. (2018), we will
consider the following initial boundary-value problem for the
horizontal displacement u :]0,L[×]0,T ]→ IR:

ρ(z)utt(z, t) = G(z, t)uzz(z, t)+η(z, t)utzz(z, t),

u(z,0) = ut(z,0) = 0, z ∈ [0,L],

uz(0, t) = 0, u(L, t) = d1(t), t ∈ [0,T ].
(1)

Herein, sub-indices t and z denote partial derivatives with
respect to time and depth, respectively. The coefficient
ρ represents density, whereas G is shear modulus and η

is the viscous damping coefficient. Function d1(t) is the
recorded downhole horizontal displacement at depth L, and
[0,T ] is the data recording interval.

We consider a shear modulus reduction relationship
introduced by Matasovic & Vucetic (1993):

G(z, t) = G0(z)
√

1−P?(z, t), (2)

where G0 is the initial shear modulus and P? is the excess
pore-water pressure ratio. Groholski et al. (2014) refer to
the factor

√
1−P?(z, t) as the degradation index, which

accounts for the reduction of effective stresses and the
corresponding degradation of shear modulus due to excess
pore-water pressure generation.

On the other hand, we use the damping coefficient
proposed by Ishibashi & Zhang (1993) and defined by:

η(z, t)=D0(z)

[
0.586

(
G(z, t)
Gmax

)2
−1.547

(
G(z, t)
Gmax

)
+1

]
G(z, t),

(3)
where D0(z) is the damping ratio. We assume the
medium is composed of Nl horizontal layers of thickness
hl , l = 1, . . . ,Nl , and coefficients ρ, G0, P?, and D0 are
homogeneous within each layer, i.e.,

ρ(z) = ρl ,

G0(z) = G0,l ,

D0(z) = D0,l

(4)

in the l-th layer (1 ≤ l ≤ Nl). Hence, in order to compute
the surface displacement u(0, t) from (1), we need the
parameters {ρl ,G0,l ,D0,l} for l = 1, . . . ,Nl as well as the
time histories of excess pore-water pressure ratios P?

l (1≤
l ≤ Nl) and the downhole displacement d1(t). In numerical
discretization, we rewrite P?

e (1≤ e≤ Ne) as P?
e (t) = P?(ze, t)

and we approximate G and η as follows:

Ge(t) ≈ G0,l
√

1−P?
e (t), (5)

ηe(t) ≈ D0,l

[
0.586

(
Gl(t)
Gmax

)2
−1.547

(
Gl(t)
Gmax

)
+1

]
Ge(t).

Inversion Viscoelastic Model

Let us proceed to the selection of input parameters to
the viscoelastic model (1). To infer the excess pore-water
pressure ratios P?

l (t) at each layer, we follow Oliveira et al.
(2018).

Material properties G0,l , and D0,l , are determined by
solving an inverse problem. For this purpose, we define
the parameter vector

m = [G0,1, . . . ,G0,Nl ,D0,1, . . . ,D0,Nl ]. (6)

Let the predicted surface displacement defined by

d(m) = [uh(0, t1,m), . . . ,uh(0, tM ,m)]T , (7)

where M = Nt is the number of observations and uh(z, t,m)
is the surface displacement computed with the spectral
element method (Oliveira et al., 2018) when the input data
is based on m.

We seek the parameter vector m that minimizes the relative
misfit between predicted data d(m) = [d1(m), . . . ,dM(m)]T

and the vector of observed surface displacements dobs =
[d0(t1), . . . ,d0(tM)]T , i.e., we seek the solution to

min
m∈IRN

f (m), f (m) =
∑

M
k=1 |dobs

k −dk(m)|2

∑
M
k=1 |dobs

k |2
. (8)

The minimization of the misfit function (8) is carried out with
the Random Walk Metropolis (Algorithm 1) and Differential
Evolution Markov Chain (Algorithm 2).

Overview of Markov Chain Monte Carlo method

Let us denote the corresponding prior information about
the shear modulus and damping ratio field by set m in
(6). Using the Bayes’s theorem we can write the posterior
probability in terms of misfit f :

π(m) = P(m| f ) ∝ P( f |m)P(m). (9)

where P( f |m) is the likelihood function and P(m) represents
the prior distribution. The normalizing constant is ignored
due to the iterative search in the McMC algorithm.

In our experiments we admit that the likelihood function is
a Gaussian distribution defined by

P( f |m) ∝ exp
(
− f (m)

σ2
P

)
(10)

where the simulated solution is obtained by spectral
discretization for each distribution m in the McMC
algorithm.

We adopt McMC method employing the most widely used
MH algorithm to explore the posterior distribution as target
distribution. The MH uses a proposal distribution q(mn,m),
which depends on the current state mn, to generate a new
proposed sample m. Then, the values proposed are accept
with probability

ν(m,m(n)) = min
{

1,
q(m|mn)P(mn| f )
q(mn|m)P(m| f )

}
(11)
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If the proposal is not accepted, then the current value of m
is retained: mn+1 = mn. In our experiments we assume that
proposal distribution is a symmetric distribution q(m|mn) =
q(mn|m), then it follows that

ν(m,m(n)) = min
{

1,
P(mn| f )
P(m| f )

}
. (12)

The MH algorithm will be an essential tool for obtaining
adaptive algorithms. We now describe the well known RW
and DE algorithms that use the MH algorithm as foundation
(Sherri et al., 2019; Ter Braak, 2005).

Random Walk Metropolis

Note that this algorithm just need only a proposal
distribution, a function to generate uniform random
numbers, and a function to calculate the probability density
of each proposal. Operationally, RW algorithm may depend
on a large number of samples Ns and the acceptance
probability (12). In addition, this single chain method
does not have an efficient representation in space of
multidimensional parameters if several solutions are locally
optimal. Based on the above problem, we are now able
to further consider Nc independent chains, which form the
multiple Markov chains (Zheng et al., 2013). This suggests
a study of multiple chains as summarized in the Algorithm
1

Differential Evolution McMC

The Differential Evolution McMC (DE) is an algorithm
in which multiple chains are evaluated in parallel
simultaneously order to improve the accuracy of the
updating parameters. This methodology combines the
abilities of the genetic algorithms for global optimization
(Sherri et al., 2019) with the MH criterion (Chib &
Greenberg, 1995). The idea of the DE method for
constructing the test parameters is to generate parameter
vectors by adding a weighted difference vector between
two population members to a third random vector member.
If the resulting vector produces an objective function value
smaller than a predetermined population member using the
Metropolis-Hasting algorithm, the newly generated vector
will replace the vector to which it was compared in the next
generation, avoiding problems of premature convergence
or loss of fitter individuals throughout the mutation process.

According Vrugt (2016), the procedure is divided into the
following steps:

(I) Generate an initial random population of feasible
solutions to solve the problem in question, whose
parameters to be built are within defined conditions;

(II) An parameter is selected or rejected using the MH
algorithm;

(III) With some probability, each variable from the previous
process is modified if the parameter was accepted or
kept preserved the previous one if the parameter was
rejected;

Algorithm 1: RW algorithm
Input:
Initialize chain by sampling from prior

m(0) = [G0,1, . . . ,G0,Nl ,D0,1, . . . ,D0,Nl ];
Set the tuning factor γ = 2.38/

√
2d such that d is the

dimension of the updating parameters and
γ1 ∼U(γ,1).

for j = 1 : Nc do
for n ∈ {1, . . . ,Ns} do

Ge(t)← G0,l
√

1−P?
e (t);

ηe(t)← D0,l

[
0.586

(
Ge(t)
Gmax

)2
−1.547

(
Ge(t)
Gmax

)
+1
]

Ge(t);

m(n−1, j)← [G0,1, . . . ,G0,Nl ,D0,1, . . . ,D0,Nl ];

Propose:
The random value ε with small variance

ε ∼ N(0,σ2);
m = m(n−1, j)+ ε;
Acceptance Probability:

ν(m,m(n−1, j)) = min

{
1,

P(m(n−1, j)| f (m))

P(m| f (m))

}
;

u∼U(0,1);
if u > ν then

Accept the proposal: m(n, j)← m;
else

Reject the proposal: m(n, j)← m(n−1, j);
end

end
end

DE algorithm solves an important practical problem in RW
algorithm, namely, that of choosing an appropriate scale
and orientation for the jumping distribution. The algorithm
is summarized in the Algorithm 2.

Applications

We will now describe a synthetic numerical experiment and
apply the DE algorithm presented in the previous section to
the Superstition Hills earthquake. The parameters that we
wish to infer, described in the numerical experiments are

m = [G0,1, . . . ,G0,Nl ,D0,1, . . . ,D0,Nl ]. (13)

In the spatial discretization we use the spectral elements of
degree Np = 4, and the time discretization step is ∆t = 0.005
s, so that the predicted data d(m) will have 200 samples
per second. Following Oliveira et al. (2018), the number of
elements of the mesh is given by Ne = 9.

In order to infer the excess pore-water pressure ratios P?
l (t)

at each layer l = 1, . . . ,Nl we follow the same steps as
Oliveira et al. (2018), i.e,

P?
e (t) = w1,ePi(t)+w2,ePj(t), (14)

where the weights w1,e and w2,e are fixed in the
interpolation. In particular, when the l-th layer is shallower
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Algorithm 2: DE algorithm
Input:
Initialize chain by sampling from prior

m(0) = [G0,1, . . . ,G0,Nl ,D0,1, . . . ,D0,Nl ];
Set the tuning factor γ = 2.38/

√
2d such that d is the

dimension of the updating parameters and
γ1 ∼U(γ,1).

for j = 1 : Nc do
for n ∈ {1, . . . ,Ns} do

Ge(t)← G0,l
√

1−P?
e (t);

ηe(t)← D0,l

[
0.586

(
Ge(t)
Gmax

)2
−1.547

(
Ge(t)
Gmax

)
+1
]

Ge(t);

m(n−1, j)← [G0,1, . . . ,G0,Nl ,D0,1, . . . ,D0,Nl ];

Propose:
Two random vectors ma, mb, ma 6= mb 6= m(n);
The random value ε with small variance

ε ∼ N(0,σ2);
m = m(n−1, j)+ γ1(ma−mb)+ ε;
Acceptance Probability:

ν(m,m(n−1, j)) = min

{
1,

P(m(n−1, j)| f (m))

P(m| f (m))

}
;

u∼U(0,1);
if u > ν then

Accept the proposal: m(n, j)← m;
else

Reject the proposal: m(n, j)← m(n−1, j);
end

end
end

or deeper than all observation points:

P?
e (t) = Pi(t), i = 1,3,5, (15)

where the piezometers P1, P3, and P5, which are located at
depths 5.0 m, 6.6 m, and 2.9 m, respectively. We discard
piezometer P2, since P5 is more reliable (see Holzer & Youd
(2007))

Finally, we need to choose the a priori bounds [mmin
i ,mmax

i ]
in (13) to get a to be physically meaningful. Thus
bounds for shear modulus and damping factor are G0,l ∈
[0.9Gr

0,l ,1.1Gr
0,l ] (l = 1, . . . ,Nl) and D0,l ∈ [0,0.5] (1≤ l ≤ Nl),

where Gr
0,l is reference value from the literature, specified

in the numerical experiments. Moreover, all results shown
here are obtained with Nc = 2d independent chains, where
d is the number of parameters. This number is justified in
Ter Braak & Vrugt (2008) considering a better convergence
for simple unimodal targets. In the McMC method we
set the following values to standard deviation: σP = 0.05
and σP = 0.1, in order to see how increasing variability
changes the solution. For the purposes of this article, it
was important to have a relatively accurate estimate of
the posterior probability, not determined by RW and DE
algorithms. In this sense a ”burn in” of 100 iterations was

allowed for, and a posterior estimate from the last 2,400
iterations, totalizing Ns = 2,500 samples for both algorithms.

The experiments have been implemented in Matlab
programming language and have been carried out in a
notebook with 16Gb RAM and a 2.40GHz Intel© Core i7-
4700HQ processor.

M1 Model: Wildlife Refuge Site with 4 layers

In this example we replicate the data provided in Oliveira
et al. (2018) where we consider a model with Nl = 4 layers
from Bonilla et al. (2005). The parameters that represent
the initial guess in the inversion are given in Table 1. The
end time and length are T= 96.98 s, L=7.5 m respectively,
and take d1(t) as the 360-degree (north-south) component
of the displacement vector recorded at 7.5 m depth. Here
we get the following arrangement for the piezometers:

P?
e (t) = P5(t) (1≤ e≤ 2),

P?
e (t) = 0.3P1(t)+0.7P5(t) (3≤ e≤ 5)

P?
e (t) = P3(t) (6≤ e≤ 9)

. (16)

l 1 2 3 4
hl (m) 1.5 1 4.3 0.7

ρl (kg/m3) 1600 1928 2000 2000
Gr

0,l (kPa) 15681.6 18896.3 26912 26912

Tabela 1 – Thickness (hl), density (ρl), and reference
initial shear modulus (Gr

0,l) of the l-th layer for the 1987
Superstition Hills earthquake.

Figure 1 we display the convergence factor R̂ as the
number of iterations increases. Here, the number Nc of the
Markov chains is equal to 16. We can find that the Markov
chains reach convergence with the DE algorithm with just
over 700 samples getting close to one (Fig. 1a) while the
RW algorithm the diagnostic measure R̂ > 1, points to that
convergence has yet to occur for no value of σP.

The minimum misfit f (m) in relation to the RW and DE
algorithms and the acceptance rate (AR) are described in
Table 2. According to this table, the minimum errors are
very close in both methods, while AR is higher in the DE .

DE RW
σP minm∈IRN f (m) AR (%) minm∈IRN f (m) AR (%)

0.05 0.2235 47.24 0.2320 24.23
0.1 0.2334 64.93 0.2336 54.58

Tabela 2 – Misfit and acceptance rate of the DE and RW
algorithms in model with Nl = 4 layers considering σP = 0.05
and σP = 0.1.

Figure 2 exhibits a comparison between reference data and
the ensemble average of displacements corresponding to
the DE and RW algorithms respectively. We can observe
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(a)

(b)

Figura 1 – Brooks-Gelman convergence factor R̂ based on
16 chains. Here, we display the change of the convergence
factor R̂ of the 16 groups of noise data that are marked
with different colors. Horizontal axis represents iteration
number and vertical axis represents simulated chains of :
(a) DE and (b) RW algorithm.

that both numerical methods have slight differences in
relation to the target solution, since both algorithms present
very close approximate solutions. In Table 3 we present
the values obtained by the inversion of the shear modulus
and the damping factor for both algorithms used in the
elaboration of these plots. Note that damping ratios are
profoundly affected from the third layer, converging to zero
in the case of DE. It is probably due to the very pronounced
liquefaction phenomena in this layer (Groholski et al.,
2014).

Conclusions

The evaluation of convergence factor R̂ after each accepted
sample illustrated in Figure 1 indicates that the DE has
a fast convergence rate and was able to converge after
700 iterations. In this way we can confirm that the DE
is characterized by a short period of exploration followed
by rapid convergence. The AR value of the updating
parameters obtained by the RW algorithm is relatively lower
than the DE algorithm. This means that most samples
were rejected in the RW resulting in many repeats of the

σP = 0.05
DE RW

l G0,l (kPa) D0,l (s) G0,l (kPa) D0,l (s)
1 16276 0.2030 16308 0.2044
2 19340 0.4353 19400 0.4312
3 26818 0 26921 0.0588
4 25604 0.3254 25658 0.3257

σP = 0.1
DE RW

l G0,l (kPa) D0,l (s) G0,l (kPa) Dmin,l (s)
1 15820 0.2790 15833 0.2785
2 18975 0.3743 19025 0.3736
3 26804 0 26844 0.0516
4 28305 0.3177 28215 0.3159

Tabela 3 – Mean of estimated parameters for the 1987
Superstition Hills earthquake considering the DE and RW
algorithms in the M1 Model.

current samples. Despite this, both methods had similar
approximations with the reference solution.
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(a) σP = 0.05

(b) σP = 0.05

(c) σP = 0.1

(d) σP = 0.1

Figura 2 – Comparative displacement mean of both the
algorithms (DE and RW) for WLA Surface after a burn-in
period of 100 samples in M1 Model considering σP = 0.05
(a)-(b) and σP = 0.1 (c)-(d). Solid lines denote the observed
data (black) and numerical solution (red) using DE and RW
algorithms.
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