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Abstract

This work uses a GPR dataset acquired at West Antarctica
to demonstrate a viable methodology in estimating the
depth to bedrock by the observed increasing dip with
depth seen in the reflectors, which we have heuristically
hypothesized to be linked to a quasi-static flow of ice
downhill to the SW, and then curving toward the NW,
following the general trend of the ice sheet to the ocean.
We have resorted to the first-order shear deformation plate
theory in order to numerically model the static, flexural
response of a homogeneous, isotropic, elastic, ice plate
due to the loading of its overburden combined to its own
weight.

Introduction

The radio-echo sounding (RES) and the ground
penetrating radar (GPR) have been extensively used
for surface-based cryospheric studies for several decades
(Potocki et al., 2011). Among several applications of
radar, ice thickness determination is the most widespread.
Striking depths of ∼ 4000m in cold ice have been achieved
more than 40 years ago (Walford, 1964). A complete
review on the application of radar to glaciology was made
by Evans et al. (1972).

Plate bending theory has been widely used in geophysics
to study the response of a planetary lithosphere to an
applied surface load (Plewes and Hubbard, 2011). The
elastic properties and effective thickness of the plate can
be estimated by relating its flexure to known surface loads.
It has also been used to model the elastic ice layer flexing
under a line-load caused by ice ridges and thus estimate
the ice shell thickness range of Europa (Turcotte and
Schubert, 2002; Billings and Kattenhorn, 2005).

The main goal of this work is to apply plate bending
theory in order to evaluate ice thickness of an ice cover
based on its flexural response to the loading of its own
weight. The main assumption for the present methodology
is that the bending moment of the ice plate is the same
as the one of an equivalent elastic plate. In this way
the effective elastic thickness is not the thickness of the
real ice plate, but a measure of its total strength, which
integrates contributions from its ductile and brittle fractions
(Holdsworth, 1969). Here we use the correspondence
principle relating mechanical behavior of any competent
plate to the one of an equivalent elastic plate (Holdsworth,
1969).

The effective thickness of an ice cover

According to the classical thin plate theory (CPT) the
bending of a given elastic plate is governed by the
biharmonic differential equation (Vaughan, 1995).
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where w(z) is the deflection along the z-axis and p is the net
force acting vertically on the plate, which accounts for the
combination of the overburden pressure due the ice above
plate surface and the weight of the plate itself. The bending
rigidity is given by
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where h is the plate thickness, E = 93.3N/m2 is the Young’s
modulus and ν = 0.325 the Poisson’s ratio. The values
of the last two parameters were taken assuming isotropic
polycrystalline ice at −16◦C (Holdsworth, 1977).

The load p accounts for the combination of the overburden
pressure due to the ice above plate surface and the weight
of the plate itself. The pressure per unit of area of a vertical
column extending from he surface z=0 to a given depth is
given by

p(z) =
∫ z

0
ρ(z)dz (3)

where g is the gravitational acceleration ath the surface and
ρ(z) is the density of ice.

Homogeneous plates can be classified in thin or thick
depending on its thickness-to-length ratio, Rtl . For Rtl <
100 the plate can be considered thin and be treated with
the CPT also referred to as Poisson-Kirchhoff theory. It
is important to emphasize that CPT is based on several
assumptions such as neglect transverse shear deformation
and rotatory inertia. The first order shear deformation
plate theory (FSDT) (Hughes, 1977; Lingle et al., 1981)
includes such corrections, allowing to estimate deflections
of moderately thick plates.

In the sequel, we apply FSDT to an homogeneous,
isotropic, elastic, square plate subject to a uniformly
distributed transverse load, as sketched on Figure 1,
resorting to an finite element formulation. The boundary
conditions are given by the way the plate is supported, e.g.,
by its corners or edges. We use a finite element forward
solver with triangular elements(Han and Lee, 2014) which
uses a matricidal element stiffness formulation (Walker
et al., 2014).
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Figure 1: The ice plate model hanging over a vertical cliff,
subject to a transverse load p. The bending is measured
along the z-axis, positive downward. This model allows
one to relate ice thickness h to its local bending w and
overburden pressure p.

Figure 2: Field sector on Korfl Ice Rise, located in
the Weddell Sea Sector, West Antarctica. Blue lines
represents the the full GPR survey. The red line is the
section we will study at this work.

The ice cover at the Korff Ice Rise

On the work of Kingslake et al. (2016), ice-flow
reorganization of an ice divide in the Weddell Sea
Sector, West Antarctica, have been dated using a novel
combination of inverse methods and ice-penetrating radar.
Figure 2 shows the considered field site on Korff Ice Rise,
where the blue lines indicate their GPR survey. For our
purposes we will focus on the red region, with related
radagram showed in figure 3. We can clearly see a
bedrock, at a depth of ≈ 460m, and ice layer reflectors
above it. Now we will apply our methodology in order to
estimate bedrock’s depth by means of ice reflectors dip.

The elastic solution for the problem of deformation of
the ice plate is sought using the observed reflectors
dips. The thickness and proportions of the mechanically
competent ice plate are directly related to its local
curvature, caused by the bending stresses, and to the

Figure 3: Processed radargram obtained from the GPR
survey. We can clearly observe a bedrock at depth ≈ 460m.

effective elastic thickness of its proxy (Holdsworth, 1969;
Maltman et al., 2000). We expect the equivalent elastic
thickness approach the actual mechanical thickness of the
ice slab for small curvatures and for a single-layer ice
rheology (Holdsworth, 1969).

Inverting for the ice thickness

Consider a homogeneous, isotropic, elastic, square ice
plate of side 2a, clamped along one side and subjected
to an uniformly distributed load p. This load accounts for
the combination of the overburden pressure and the weight
of the plate. The dips in the reflector in Figure 3 will be
employed to estimate plate bending, the ice above the
reflector being the overburden.

Figure 4: The pickings on the ten more prominent reflectors
from the radar section (Figure 3) are shown as color open
circles. The solid lines represent the fitting of a 3rd order
polinomials.
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In Figure 4 are sketched the pickings taken from Figure 3.
The minimum depths, or the apices of all picked reflectors,
align at x ≈ 1500m along the profile. The alignment of
apices, also observed in Raymond arch stacks at ice
divides (Thai and Kim, 2012), gives more weight to the
hypothesis of an asymmetric ice divide (Reddy, 1984).

Considering the above we set the apex of each reflector as
the physical counterpart of the clamped side of all modeled
plates. The overburden thickness is set to be equal to the
depth of the clamped side. Both the deflection estimative
wp(x) and overburden thickness z are given by the pickings
to the left of the apex.

Deflection depends on the rigidity D of the plate and on
the distributed load, allowing an inverse estimation of plate
thickness from the picked values of wp(x). The model
with the best fit to a given picking will correspond to the
minimum of the objective function

Fo =

√
n

∑
i=1

(wp(x)−wi(x))2 (4)

where wp(x) and wi(x) are the deflections given by a given
picking and the ones from all numerically modeled plates
i = 1, ...,n.

We model a 2a = 1km ice square plates with thickness
varying h = [50,500]m in increment of ∆h = 2m with
overburden thickness, i.e., the ice mass between a
particular reflector and the surface, varying [50,600]m in
increments of 2m. The fine discretization and breadth
along z of the modeled plates are more than enough to
represent all possible depths to the bedrock, including
the overburden, spanning over a thickness range of
[100,1100]m.

We have inverted each of those 10 picking curves, shown
in Figure 4 to yield an estimate for the equivalent elastic
thickness for the ice cover. We obtain 10 uncorrelated
estimates varying in the range [376,594], with an average
of ≈ 501m. This is just ≈ 9% above the real value of
460m, a remarkable figure considering we did not impose
any constraint in our inversions. In order to have a better
measurement of the efficiency of the present methodology,
we plot in Figure 5 the dip of a selected picking and the
related prediction provided by the plate model. The fitting
is noteworthy, and the inversion estimates an effective
thickness of ice cover of ≈ 434m .

Conclusions

This work demonstrates a viable methodology in estimating
the ice cover thickness at an Korff Ice Rise using the dip
of the reflectors picked from a GPR section. We have
heuristically hypothesized the increasing dip with depth of
the reflectors in the GPR section to be linked to a quasi-
static flow of ice downhill to the SW, and then curving
toward the NW, following the general trend of the ice sheet
to the ocean.

We have resorted to first-order shear deformation plate
theory to numerically model the flexural response of an
homogeneous, isotropic, elastic, ice plate to the loading of
its overburden combined to its own weight.

We have set on inverse problem for each of the 10 chosen

Figure 5: Comparing plate model with the pickings for the
second shallower curve in Figure 4. For this specific case,
the inversion yields an effective thickness of ≈ 434m.

reflectors, in which we have matched the apex of each one
to the clamped side of each modeled plate. Each inversion
problem converged to an effective thickness estimative
corresponding to a single conspicuous minimum of the
objective function. The average of the estimative yields
an effective thickness of 501m, which is close to the real
thickness.

As a perspective, we intend to adopt a quality criterion
to accept or discard a given picking on the basis of
some characteristics like the overall smoothness of a given
reflector. In this way one can achieve a smaller scattering
between independent inversions.
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