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Abstract

In many test cases of time-domain full-waveform
inversion (FWI) methodologies, both the observed and
calculated seismic data are synthetic. This paper
aims to analyse the impact on the final inversion
if different absorbing boundary conditions are used
in observed and calculated data. The inversion is
also analysed for an observed data free of boundary
reflections (closer to a real dataset), and its inversion
using the ”taper” and a perfectly matching layer
(PML) boundaries. To carry out the tests in a timely
manner, a GPU implementation of multiscale FWI with
a finite-differences scheme for modeling and a L-
BFGS algorithm with variable step-length for inversion
were used. We show that the inversion is valid
if different boundary conditions on observed and
calculated data are used, but that the best final velocity
model is obtained when the same boundary condition
is applied; and that for a dataset free of boundary-
reflection events, the PML guarantees a better final
inverted model when compared to the taper.

Introduction

Full-waveform inversion (FWI) is becoming established as
one of the main techniques for high resolution velocity
estimation. The time domain formulation proposed by
Lailly (1983) and Tarantola (1984) consists of updating
the velocity model by minimizing a misfit function between
recorded and observed data. They show that the gradient
of the misfit function along which the perturbation model
is searched can be built by crosscorrelating the incident
wavefield emitted from the source and the back-propagated
wavefields (Virieux and Operto, 2009). The basis of every
iterative time domain FWI minimization is the calculation
of this gradient at each iteration, which require wavefield
extrapolation of the source and residue. The computation
of the wavefields numerically, in finite grids, presents the
persistent problem of artificial reflections at the edges of
the model (Clayton and Engquist, 1977; Engquist and
Majda, 1977). This paper aims to study the effects of these
border effects on time domain FWI.

As booming field of study, many methodologies have been
analysed for time domain FWI. Many of the papers in the
literature use synthetic data to represent the observed data
dobs, often calculated with the same modeling operator

and absorbing boundary condition used to calculate the
modeled wavefield yielding dcal required for the gradient.
Among many examples, we could cite Yang et al. (2015)
and Chen and Wang (2017) which uses in dobs and dcal the
same absorbing boundary condition (ABC) proposed by
(Clayton and Engquist, 1977; Engquist and Majda, 1977).
The results in this paper show that the quality of the final
velocity model estimated by FWI using synthetic dobs is
greatly affected by the edge events, and the absorbing
boundary condition used.

To explore this influence we ran the FWI for two different
boundary conditions: one that tapers the amplitudes of the
wavefields at the border (taper, proposed by Cerjan et al.,
1985), and one using a version of the perfectly matched
layer (PML, Collino and Tsogka, 2001). We also modeled a
dobs free of edge reflections and tested FWI with dcal using
each of these absorbing boundary conditions.

As time domain FWI is a local optimization problem, it is
prone to convergence to local minima. An efficient way
to avoid this problem is to use the multiscale approach
(Bunks et al., 1995), where the first iterations are done
for the lower frequency content, and higher frequencies
are included gradually in the process. Estimating a good
approximation of the Hessian, applied to the gradient in
the Newton’s formulation of the problem, also plays an
important role on avoiding local minima. To ensure a good
Hessian approximation, we used the L-BFGS (Nocedal and
Wright, 2006) algorithm.

Wavefield extrapolation is the core of every iteration of
time domain FWI, and is a highly intensive computational
process. Fortunately, it is a highly parallelizable problem.
It can be parallelized for each shot or for each point of
the wavefield. The first type of parallelization (on shots)
is usually done using several CPUs, for example using a
MPI implementation (dos Santos, 2013). The second type,
wavefield points on parallel, and one shot at a time, can be
better implemented by using the graphics processing unit
(GPU), the method of choice in this paper.

We study the influence of different absorbing boundary
conditions on FWI in two set of tests. In the first set
we compare the inversion for dobs and dcal with the same
ABCs, and each with a different ABC. In the second set
we test FWI for a dobs modeled with no border reflection
events, and inversions done for dcal with taper, and PML.

Overview of time-domain acoustic FWI

In the classical formulation given by Lailly (1983) and
Tarantola (1984), FWI is an optimization problem that
seeks to find the best velocity model m that minimizes in a
least-squares manner a misfit function E, which measures
the error between an observed data dobs and calculated
data dcal obtained from solving the forward problem over m:
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E(m) =
1
2
||dobs−dcal||2 = ||dobs−F(m)||2, (1)

where ||.||2 is the l2-norm and F(.) is the forward modeling
operator, which in an isotropic, acoustic and constant-
density 2-D medium is given by:

∂ 2 p(x, t)
∂ t2 = v2(x)∇2 p(x, t)+ s(x, t), (2)

with p(x, t) being the pressure wavefield, v(x) is the
acoustic velocity (representing the model m), ∇2 the
Laplacian operator, and s(x, t) is a source term. F(.) can
then be interpreted as the operator that finds p for each
source over time and restrains it to receivers geometry
(typically over the surface), matching dcal to dobs.

The minimization of the misfit function 1 is then achieved
iteratively, due to its highly nonlinear behavior. Following
Newton’s method formulation, the model update is given
by (Ma and Hale, 2012):

mk+1 = mk +H−1
k gk. (3)

The gradient g can be efficiently computed using the
adjoint-state method (Lailly, 1983; Tarantola, 1984;
Plessix, 2006):

g =
2
v3

∫ tmax

0
λ

∂ 2 p
∂ t2 dt, (4)

with tmax being the maximum time recorded on the data
set, p the forward propagated source wavefield, and λ

is the back-propagation of the residues, using s(x, t) =
(dobs − dcal) as source for equation 2. The calculation of
g is accumulated shot by shot, correlating fields λ and ∂ 2 p

∂ t2

in the same fashion as in a reverse time migration. The
derivative field ∂ 2 p

∂ t2 is usually calculated as v2∇2 p (equation
2), as the Laplacian is already available from the numerical
extrapolation scheme.

The Hessian H has a large size and its explicit numeric
calculation is very costly, as it requires too many
extrapolation steps to be computed (Virieux and Operto,
2009). To circumvent this problem, the iterative update
equation 3 can be re-written in a generalized form as (Ma
and Hale, 2012):

mk+1 = mk +αkhk, (5)

In this paper we follow the development of Yang et al.
(2015) for αk, using an extra modeling process with a
tentative velocity model to in order to accurately calculate
the step length (Pica et al., 1990). The term hk is a search
direction that can be determined by gradient methods, such
as steepest-descent or nonlinear conjugate gradient (Yang
et al., 2015) or quasi-Newton methods, such as the L-
BFGS (Liu and Nocedal, 1989). In this paper the L-BFGS
was the method of choice.

The L-BFGS method was designed to directly compute
the search direction, without explicitly storing the Hessian
matrix approximation (dos Santos and Pestana, 2015). The
method initializes direction hk using the current gradient gk

as given by equation 4. It also makes use of the previous
models and gradients in the last m iterations, in order to
approximate the Hessian (Nocedal and Wright, 2006). For
the tests in this paper, 10 past iterations were used (m= 10).

FWI is a highly nonlinear problem, and the local
minimization procedure is prone to converge to local
minima. To avoid that we used a multiscale frequency
approach, where the first iterations are done for the lower
frequency content, and higher frequencies are included
gradually in the process. A detailed explanation of the
multiscale process can be found in Bunks et al. (1995).

Regular grid solutions to the edge reflection problem

Solving the Laplacian in 2 numerically (using the
neighboring points) causes the wavefield to reflect when
it reaches the limits of the model; since there are no
neighboring points to calculate the Laplacian, the process
must be stopped, causing the wavefield to reflect back
to the model (this also happens in the pseudo-spectral
method, since the spatial wavenumbers are discretized).
This long known problem in seismic modeling have since
been solved by extending the velocity and pressure
fields, and at these extended boundaries, applying some
amplitude attenuation condition to the amplitudes. Greatly
extending the grid so that the boundary reflections could
not interfere with target events also solves the problem,
but is unfeasible from a computational point of view (since
the bigger the grid, the longer the processing). One of
the most used techniques to attenuate border events on
a regular finite-difference scheme is to gradually taper the
amplitudes at the extended border with a factor (Cerjan
et al., 1985):

T (ib) = e−[0.015(nb−ib)]2 , (6)

with ib being the distance from model edge to current point
inside extended border, and nb the size of the extended
border.

Another powerful technique well-established by Collino
and Tsogka (2001) for attenuation of the edge events on
the numerical solution of the elastodynamic problem is
the perfectly matched layer (PML). Interested readers are
referred to Collino and Tsogka (2001). Here we develop an
adaptation of this method for the regular grid acoustic case.
Our approach to the problem is to use, at the extended
boundaries, a damped acoustic wave equation (Moreira
et al., 2011):

∂ 2P
∂ t2 +2αB

∂P
∂ t

+α
2B2P = c2

0∇
2P, (7)

which when solved with a 2nd order centered finite-
difference for ∂ 2P

∂ t2 , and forward finite-difference for
∂P
∂ t ≈

P(t+∆t)−P(t)
∆t , gives:

P(t +∆t) =
[

1
1+2αB∆t

]{
2P(t)−P(t−∆t)

+ c2
0∆t2

∇
2P(t)+ [2αB∆t−α

2B2
∆t2]P(t)

}
, (8)

where (Moreira et al., 2011):
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B = c2
0

α(ib) =
1

c2
0∆t

ln
(

1
rpml

)(
ib
nb

)k
, (9)

and the best results were obtained for rpml , the maximum
absorption coefficient, being equal to 0.8, and the exponent
k being equal to 4. In this paper we tested the proposed
by Moreira et al. (2011) and a modified form for α that
provided better results, adapted from Collino and Tsogka
(2001) where:

α(ib) =
3

2 nb c0
ln
(

1
rpml

)(
ib
nb

)k
, (10)

with rpml = 0.5 and k = 2.

In our implementations the PML is slightly more costly than
the taper, since the latter can be applied by a single step
- multiplying the amplitudes by the factor T -, while PML
requires two steps - calculating the laplacian of p(x, t) and
its damped version (last term in equation 8), and then
compute p(x, t +∆t) -.

Figure 1 allows a visual comparison between propagations:
without absorbing boundaries (a), with taper (b), with PML
(Moreira) (c), an with PML (modified Collino-Tsogka) (d).
Analysing the reflection in the bottom edge, for this 2-
layer model, the taper was the one that most attenuated
the lower edge event. Since the modified-Collino-Tsogka
approach showed slightly better results compared to the
Moreira-approach, in the FWI tests we only compared taper
and modified-Collino-Tsogka boundary conditions.

GPU implementation

Seismic modeling is a highly intensive computation
process. In this implementation each iteration of FWI
roughly requires three seismic modeling processes: two
for p,λ (gradient) and one for F(mk + εhk) (step length).
Fortunately, it is a highly parallelizable problem. It can
be parallelized for each shot or for each point of the
wavefield. The first type of parallelization (on shots) is
usually done using several CPUs, for example using a
MPI implementation (dos Santos, 2013). The second type,
wavefield points on parallel, and one shot at a time, can be
better implemented by using the graphics processing unit
(GPU), the method of choice in this paper.

The GPU was initially designed for graphical renderization,
where every image pixel is constantly updated in parallel
(NVIDIA, 2010). GPU dedicates more transistors to data
processing than CPU, and less for data cache and control,
thus being faster for floating point calculations, and slower
for memory transfer processes. In 2006, NVIDIA started
launching hardwares with CUDA (compute unified device
architecture), expanding the pixel-oriented calculations to
more general types of data, and a C based language,
CUDA C (Sanders and Kandrot, 2010).

The GPU is efficient for intensive calculation problems that
require few memory transfers. This is the case for seismic
modeling, that consists of updating a wavefield over time,
and only transferring data back to the CPU when the shot
is finished. In this paper the wavefield extrapolations were
done on the GPU, one shot at a time. Interested readers

on GPU implementation of seismic modeling are referred
to Wang et al. (2011).

Results

To understand the influence of the absorbing boundary
in dobs and dcal, and later on the FWI, we initiate the
analysis using a 28 shots, regular split-spread data, with
101 receptors in each shot, and an interval of 10 samples
between shots over a reduced Marmousi model (Irons,
1988) of size 125 × 383, modeled with no absorbing
boundary condition. The reduced Marmousi model is
shown in Figure 3-a, and the shots modeled with no border
in Figure 2-a. The most noticeable events arising from
reflections on edges are elucidated in Figure 2-b: there is
a strong reflection from the top limit, present in all shots;
reflections on the left side of the model in the initial shots;
and reflections on the right side of the model in the last
shots.

An efficient way of generating an ”infinite border”, which
is a real acquisition situation (there is no border, except
the top edge corresponding to the air-earth interface), is to
model with a boundary thickness two times bigger than the
vertical dimension of the model, in a way that the arrival
times for the edge reflections are bigger than the maximum
recorded time. In this example, nz = 125, e and the border
thickness is nb = 256. The result is a seismogram free of
boundary events, but the processing and memory required
for this modeling is around 6 times greater than modeling
with nb = 32 and absorbing boundaries. For this reason, in
most cases, modeling without border events is not feasible
(in time and/or memory).

Figures 2-c,d highlights the border events for modelings
with ”infinite boundary” (2-c), without boundaries (2-d).
Figures 2-e,f with nb = 32 and taper (2-e) and with nb = 32
and PML (figure 2-f). The size 32 was chosen empirically,
since it provided a good attenuation of the edge events at
a low computational/memory cost.

Every result on each set of tests was obtained from 120
iterations of a multiscale FWI, with 4 rounds of 30 iterations,
and the frequency bands divided in: 0− 7.5 Hz, 0− 14 Hz,
0−22.5 Hz and 0−30 Hz. For the source we used a Ricker
wavelet.

In the first test we ran each of the following cases:

1. dobs and dcal with taper,

2. dobs and dcal with PML,

3. dobs with PML and dcal with taper.

The results are shown in Figure 5, and are very similar.
The total RMS error (comparing result and original model)
on figure 5-d for each inversion shows with more detail that
”PML-PML” is better in the first 30 iterations, corresponding
to the lowest frequency multiscale round; in the following
rounds, where greater frequencies are included, ”taper-
taper” performs better. As expected, the ”PML-taper” result
is the worst of all, but still produces a reasonable image
(figure 5-c), although the oil reservoir in the anticline of the
Marmousi model (at z = 2.5km and x = 6.5km) is not well
imaged.

It shows that FWI for synthetic dobs and dcal gives the best
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results if the absorbing boundary condition is the same for
both datasets; and that taper in both datasets gave the best
results.

The second and final test evaluates FWI for a dobs closer
to reality, modeled with nb = 256, without border events
(Figure 2-c). We then test the inversion for dcal with taper
(Figure 2-e), and for dcal with PML (Figure 2-f). The result
for each test is shown in Figure 4 (a) and (b), respectively.
To quantify the results a total RMS error (compared to
original model) is presented (Figure 4-c), providing more
detail to the analysis.

Conclusions

The inversion using dcal with PML showed better results
than the one with taper, but neither imaged the reservoir
at (z,x) = (2.5km;6.5km) correctly. We can notice that the
edge events influence the inversion process, since they
affect the residue dobs−dcal, but not to the point of making
it unrealizable. This test, when compared with the previous
one, shows that the attenuated edge events present in
dobs and dcal are assimilated in the inversion process as
relevant events in the imaging process, since for example
the reservoir on the model is well imaged for the first set
of tests, but not for the second. The inversion results for
this second test is still considered bad, based on the fact
that the final RMS error for the inverted model is greater
than the RMS error for the initial model (Figure 4-c; both
compared to the original model). In conclusion, all the tests
suggest that when dealing with real data, PML usage for
dcal can give better results.
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a) b)

c) d)

Figure 1: Propagation in a 2-layer model, after 20ms. a) No
absorbing boundary; b) with taper; c) with PML (Moreira);
d) with PML (modified Collino-Tsogka).
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a)

b)

c)

d)

e)

f)

Figure 2: a) 28 shots modeled with no absorbing boundaries. b) Highlighted edge reflection events: reflections on the top
border (1); reflections on the left border (2); reflections on the right border (3). c) Shots modeled with border thickness of size
256, without edge reflections. d) Shots modeled without absorbing boundaries. e) Shots modeled with taper. f) Shots modeled
with PML.
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a)

b)

Figure 3: Reduced (125 × 383) Marmousi model. a)
Original. b) Smoothed twice.

a)

b)

c)

Figure 4: Results of FWI for a dobs with ”infinite border” (no
edge reflection events). a) dcal with taper. b) dcal with PML.
c) Total RMS errors for results (a) and (b).

a)

b)

c)

d)

Figure 5: Results of multiscale FWI, with boundary
thickness of size 32. a) dobs with taper, dcal with taper.
b) dobs with PML, dcal with PML. c) dobs with PML, dcal with
taper. d) Total RMS errors for results (a), (b) and (c).
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