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Abstract 

The seismic attributes associated with frequencies are 

important to characterize stratigraphic sequences and 

hydrocarbon reservoirs. The spectral recomposition is a 

technique to extract wave parameters as frequencies and 

amplitudes of the components of a seismic spectrum. 

The spectral recomposition to recover the frequencies 

and its associated amplitudes (weights) was performed as 

an inverse problem by an optimization criterion. The 

analyses of sensibility, unicity and stability were also 

performed. 

With the frequencies and amplitudes recovered, the 

spectral recomposition showed to be an efficient way to 

reach a better characterization of a stratigraphic model. 

With the sensibility analysis, the frequencies which are 

more difficult to be recovered were determined. The 

complexity of the objective function was studied analyzing 

the unicity and the stability of the function. 

Introduction 

When the seismic signal is received with each set of 

frequencies, there is a great possibility of have a better 

resolution. The fact of have a complete knowledge of 

each frequency of a spectrum is important to stratigraphic 

characterization and hydrocarbon reservoir 

characterization (Castagna et al., 2003; Li et al., 2011). 

Another possible and useful application is to select 

frequency bands to perform noise filtering. 

The technique called spectral decomposition was strongly 

studied since it was created (Dilay and Eastwood, 1995; 

Chakraborty and Okaya, 1995; Partyka et al., 1999; Liu, 

2006; Chen et al., 2008; Liu et al., 2011). This technique 

was usually executed by a time-frequency analysis. 

Differently of the other approaches, Tomasso et al. (2010) 

proposed a method which recomposes single frequencies 

into a multi-frequencies model, and not decomposing the 

frequencies. The limitation of this approach is associated 

to the manual pick of each set of frequencies and 

amplitudes (weights). To overcome this situation, Cai et 

al. (2013) propose an automatic estimation of linear and 

nonlinear parts of the Ricker wavelet spectrum based on 

nonlinear estimation of Golub and Pereyra (1973). 

The representation of a seismic spectrum was made by 

the sum of different Ricker components and uses the 

Nelder-Mead algorithm (Nelder and Mead, 1965) as the 

optimization criterion. The spectral recomposition was 

treated as an inverse problem aiming to estimate the 

peak frequency and its correspondent amplitude (weight) 

of each component. 

Method 

Tomasso et al. (2010) described a seismic spectrum as a 

sum of different Ricker components (Equation 1). 
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The spectrum of a seismic trace is represented by d(f), f is 

the vector of frequency, mi is the peak frequency of a 

determined Ricker spectrum component and ai is the 

amplitude of each determined component (Equation 2). 
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(2) 

This is a linear combination of the Ricker wavelet spectra 

with nonlinear functions which depend on two vectors of 

parameters, the vector of frequencies and the vector of 

correspondent amplitudes (weights). Here, it has been 

treated as a single vector of parameter containing both 

vectors to perform a more efficient inversion. 

At first, it must be studied the sensibility of the parameters 

to identify the difficulty of recover each frequency and 

amplitude (weight). The sensibility analyses were 

performed by perturbed parameters and by 

decomposition in singular values. 

Due to the fact of the problem has many variables, it must 

be treated as an inverse problem by an optimization 

criterion (Bokhonok, 2010; Zuniga et al., 2015). The 

optimization algorithm used here was Nelder-Mead 

(Nelder and Mead, 1965). An important analysis 

performed here was the study of stability and unicity to 

identify the complexity of the objective function. 

The spectrum model used in this work is composed by 

five pairs of frequencies (m1, m2, m3, m4 and m5) and 

amplitudes (a1, a2, a3, a4 and a5): m1=2Hz and a1=0.8, 

m2=5Hz and a2=0.7, m3=8Hz and a3=0.5, m4=12Hz and 

a4=0.3, m5=15Hz and a5=0.1. 
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The model is represented by a Ricker wavelet spectrum 

with random noise (Figure 1) and after the Fourier 

transform as a frequencies spectrum (Figure 2). 

Results 

Analyzing Figure 3, it is clearly observed that the 

amplitudes have a greater sensibility than the 

frequencies. 

It can be observed that the amplitudes are better defined 

in eigenvector in data space than the frequencies, and the 

definition of parameters is decreasing with the increase of 

frequency (Figure 4 and Figure 5).  

It can be also observed that the singular values of 

frequencies are much lower than the values of 

amplitudes. The eigenvector in parameters space shows 

a good definition of all frequencies and amplitudes (Figure 

4 and Figure 5). 

Concerning to the unicity of this model, it can be observed 

that there are many solutions for this inverse problem 

(Figure 6). It shows a good stability as it can be observed 

the similarity of the distribution structures of the 

associated histograms (Figure 6). 

The calculated curve can be seen with a good fitting to 

the observed curve (Figure 7) and the residual error does 

not exceed the order of 10
-2

 (Figure 8). 

Conclusions 

Concerning to the sensibility analysis with perturbed 

parameters, it can be seen that the frequencies are much 

more difficult to be recovered. 

The good definition of amplitudes in the eigenvectors in 

data space defines the ease of the parameters 

recovering. 

Even with the parameters well defined in eigenvector in 

parameters space, the low singular value of frequencies 

limits the sensibility of the parameters causing some 

problems to recover the values of these frequencies. 

An important factor is the difficulty to recover higher 

frequencies and amplitudes associated with higher 

frequencies. Therefore, the low frequencies are better 

recovered than the higher ones. 

Even with a difficulty to find some parameters, all of them 

were well recovered with a low error. 

The results obtained in this work show the efficiency of 

this method combined with this inversion routine to 

perform a spectral recomposition. 

In future works, it is important to analyze more precisely 

the influence of high frequencies in the difficulty of the 

parameters recovering. 

 
Figure 1: Ricker wavelet spectrum of the model on time 
domain with random noise. 
 

 
Figure 2: Frequencies spectrum of the model with random 
noise.  
 

 
Figure 3: Frequencies spectra of the model without noise, 

and with perturbations in each frequency (solid lines) and 

each correspondent amplitude (weight) (dotted lines) 

focusing the sensibility analysis with perturbed 

parameters (perturbation of 1% in each parameter). 
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Figure 4: Sensibility analysis using decomposition in singular values for frequencies (a) m1, (b) m2, (c) m3, (d) m4 and (e) 

m5. The eigenvector in the data space on the left column, the singular value on the middle column and the eigenvector in the 

parameters space on the right column. 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 5: Sensibility analysis using decomposition in singular values for amplitudes (weights) (a) a1, (b) a2, (c) a3, (d) a4 and 

(e) a5. The eigenvector in the data space on the left column, the singular value on the middle column and the eigenvector in 

the parameters space on the right column. 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 6: Histogram showing the distribution of occurrences of each interaction of the four inversion routines. In the left 

column is shown the distribution of occurrences of the frequencies of the (a) first, (b) second, (c) third and (d) fourth inversion 

routines. In the right column is shown the distribution of occurrences of the amplitudes (weights) of the (e) first, (f) second, (g) 

third and (h) fourth inversion routines. 
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Figure 7: Curve fitting between the observed curve and 
the calculated curve with the inversion routine. 
 

 
Figure 8: Residual amplitude between the observed curve 
and calculated curve. 
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