
Modelling visco-acoustic wave equation in frequency domain using mixed-grid
Finite-Difference method and attenuation-dispersion model defined for quality factor
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Abstract

Seismic modeling is an important step in the process
used for imaging earth subsurface. Current applica-
tions require accurate models associated with solu-
tions of the equation of wave propagation in realis-
tic medium. In this work, we propose a modelling for
2D wave propagation in a visco-acoustic medium with
variable velocity and density, handled in the frequency
domain under conditions that describe dissipation de-
pending on the quality factor Q. We use mixed-grid
finite-difference method and optimize it for the case of
the visco-acoustic medium with the aim to minimize
numerical dispersion. We present solutions for test
cases in homogeneous and heterogeneous media and
compare the analytic solutions. Further, we compare
the solution using conventional grid (5-point scheme)
and our mixed grid implementation (9-point scheme),
finding a better response with the mixed grid 9-point
scheme. We also studied the characteristics of the nu-
merical solution, wave fields P-waves are discussed
for variable velocity, density, damping functions and Q
values finding that the method performs very well with
very much potential in applications of FWI.

Introduction

Modelling wave propagation in real sub-surface is a com-
plex task, physics is complicated and several simplifying
approximations have to be made. However in order to
get precise information about the physical properties of the
sub-surface, the better we model the propagation of waves,
the better the result of the understanding of the properties
of the medium.

Although the acoustic approach has been very success-
ful so far in the modelling of wave propagation in the sub-
surface, Earth is not totally elastic neither totally viscous
and a combination of both extreme behaviours should fit
the properties of wave propagation. The visco-acoustic
media can be defined as a medium without cross propa-
gation but exhibits attenuation in the amplitude of the lon-
gitudinal wave, this media presents two phenomena, dissi-
pation, produced by energy absorption such that amplitude

wave is reduce especially in high frequency and dispersion,
by the change in the density, where the wave velocity de-
pends the frequency [15].

To describe the attenuation of seismic wave front energy [1]
proposed a model based in linear solid material rheology
and memory variables. In [5] they used a visco-acoustic
wave equation to compensate for the energy decrease of
wave propagation in a realistic media using an extrapolator
based in the propagator of the wave equation in the for-
ward and backward direction. While [16] present a detailed
comparison of different visco-acoustic wave equations and
studied their dissipation and dispersion properties, provid-
ing a rough idea about how the most commonly used visco-
acoustic wave equations perform.

In particular, the realistic modelling of wave propagation
is an important step in the process used for imaging earth
subsurface. Currently, one of the most powerful techniques
of seismic tomography that uses solutions of the wave
equation is called Full Waveform Inversion (FWI) [4]. FWI
consists on obtaining the model parameters of the sub-
surface m̂ through an inversion process that relates com-
parison between models dcalc(m) and observed data dobs,
minimizing the objective function ||dobs − dcalc(m)||2. To
understand and emulate the complex wave phenomena in
a realistic heterogeneous medium it is necessary a seismic
modelling where the result is a wavefield obtained through
the numerical solution of the wave equation.

We aim to provide a model for the propagation of waves in a
general visco-acoustic media in the frequency domain op-
timized for applications in FWI (seismic tomography), con-
sidering the effects of attenuation. It is one more solution to
visco-acoustic wave equation but this time in frequency do-
main. In other works, there are several ways to include the
effects of attenuation in the wave motion equations and dif-
ferent models using some special mathematical tools as it
is shown in [16], one of them is working in the frequency do-
main using a term known as complex bulk modulus, which
is a method easy to implement and to relate to the quality
factor Q [1] and others works using Laplace transform for
the model [7] and FWI [13].

This work focuses on the propagation of mechanical waves
in a medium with explicit attenuation modelled through the
damping functions and quality Q factor. Frequency domain
is adopted in this work since it always the study of effects of
the modelling (attenuation, dispersion) on individual wave
frequencies. We pay especial attention to the quality of
the solution and provide results of the implementation of
optimal mixed-grid scheme looking for minimization of the
numerical dispersion in the implementation. Instead mod-
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elling explicitly the elastic and viscous excitation modes [1]
we model the dissipative effect of the medium explicitly
through damping functions that attenuate the wave ampli-
tude according to the quality factor of the media for different
frequencies.

Equation of propagation in medium visco-
acoustic, mathematical and physical formulation

Wave propagation rests on the basis of mechanics of the
continuum medium. Basic equations that describe the mo-
tion of the media and perturbations propagating inside it
are the conservation of mass, linear and angular momen-
tum conservation, and for closure one requires an equa-
tion of state or governing equation that relates the intrinsic
properties of the media with its dynamical variables [10]

Now, if we assume that the medium is visco-acoustic, ir-
rotational and compressible but assuming that the flow is
approximately constant we can reduce the governing equa-
tion to:

σij(x, t) = −p(x, t)δij = ∇ · u(x, t) ◦M(x, t)δij (1)

Where p(x, t) is a pressure wave and δij is a kronecker
delta. For an acoustic medium the wave propagation is lon-
gitudinal, such that oscillation of the particles is parallel to
the direction of wave propagation then, there is no shear
waves. On the other hand for a visco-acoustic medium
pressure wave is related with u(x, t), the particle displace-
ment, andM(x, t) is the time derivative of the elastic tensor
often named complex bulk module [4]. M(x, t) accounts for
the elastic and dissipative properties of the media.

Equations (1) is a Hooke’s law and combining states the
conservation of mass, linear and angular momentum con-
servation one can get Newton’s law.(

∂

∂t
+ γ(x)

)
v =

1

ρ(x)
(∇ · σ + f) (2)

Where γ(x) is called the rate deformation function, such
that it represents the temporal variation of the stress ten-
sor and is related to the viscosity of the medium, ρ is the
density, v represents the particle velocity, σ is the stress
tensor, f represents the body forces. It is noticeable that
this balance of force in the equation (2) is similar to the bal-
ance of forces for damped harmonic oscillator, where γ(x)

it is an important term in the relation of energy stored and
energy lost per cycle [15]. Applying a Fourier transform to
eqs. (1) and (2) we have

− iωP (ω,x) = M(ω,x)∇ ·V(ω,x) (3)

−iωV(ω,x) = − b(x)

ξ(ω,x)
∇P (ω,x)+

b(x)

ξ(ω,x)
F(ω,x) (4)

Where ξ(ω,x) = 1 + i γ(x)
ω

and b(x) = 1
ρ(x)

. The propaga-
tion of waves in a visco-acoustic media presents both dis-
sipation and dispersion. These effects are modeled using
the damping functions, ξ(ω,x) so that the attenuation oc-
curs, and since the realistic situation implies dispersivity in
the media, this damping must be modelled as a frequency
dependant process.

The complex bulk modulus must be related to ξ(ω,x) sub-
ject to the constraint that when no dissipation M(ω,x) →
K(ω,x), whereK(ω,x) is an acoustic bulk modulus, so we
define

M(ω,x) = K(x)α(ω,x) = K(x)
1

ξ(ω,x)
(5)

Where α(ω,x) is complex. To establish a relation between
α and ξ we combine the equations (3) and (4) in the homo-
geneous case, with ρ =cte, c =cte and γ =cte and obtain(
ξ
α
k2 +∇2

)
P = ∇ · F. If α = ξ reduces to the acoustic

wave equation in frequency domain, but since α = 1
ξ

then
the equation is recast as

(k̃2 +∇2)P = ∇ · F (6)

The equation (6) is the Helmholtz equation with complex
coefficients, where k̃ is called complex wave number. The
real part of k̃ is ω

c
, the conventional wave number, and the

imaginary part γ
c

is the pseudo wave number. This concept
is applied in attenuation-dispersion models related to the
quality factor Q. In other words, we can relate our damping
functionM(ω,x) with the models of attenuation and disper-
sion, in this way it allows us to propose damping functions
that have an actual relationship with the properties of the
medium we want to model.

Then, the equation for wave propagation in our visco-
acoustic media can be obtained combining equations (3),
(4) and (5) as

ω2P (ω,x)

K(x)
+

1

ξ(ω,x)
∇ ·
(

b(x)

ξ(ω,x)
∇P (ω,x)

)
=

1

ξ(ω,x)
∇ ·
(

b(x)

ξ(ω,x)
F(ω,x)

)
(7)

In this situation we have the freedom to choose the way
we model the attenuation. For example, using the mod-
els described in [15] we decided to study three different
attenuation-dispersion models, where we focus on its de-
pendence on the frequency and dispersion associated with
them.

1. Kolsky’s: ξ(ω,x) = 1 + i 1
2Q(x)

2. Cole-Cole: ξ(ω,x) = 1 + ig(Q,x)ω−n

3. General linear model: ξ(ω,x) = 1 + ih(Q,x)ωn

Where g(Q,x) and h(Q,x) are function, these can be
found in the reference [15].

Numerical solution technique: Mixed Grid and
Lumped Mass strategy

In general, obtaining a solution of equation (7) is not pos-
sible for arbitrary medium properties and boundaries. A
natural approach is then to look for numerical solutions us-
ing e.g. finite differences. Although the finite difference
method is widely used for solving differential equations, it
has very well known problems of numerical dispersion that
are related to the discretization of the media.
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To avoid these numerical problems [6] propose a scheme
of two overlapping grids to solve the PDE. One of the grids
has a conventional cartesian grid, and the second one is
a rotated cartesian grid, assuming a 2D problem with co-
ordinates (x, z) and using (3), (4), (5) In this kind of setup,
the solution is obtained evaluating the fields in a total of
9 grid points, thus reducing the numerical dispersion and
trying to cover all directions of propagation. Then, using
centered finite-difference for partial derivatives, in conven-
tional grid, we find the derivatives of the function V(x, ω)

and the derivatives of P (x, ω) a function of the grid spac-
ing ∆. Now, for the rotated grid, using a rotation of 45◦, we
obtain the transformation rule for the derivatives in such
system, then in the rotated system

∂

∂x
=

√
2

2

(
∂

∂x′
+

∂

∂z′

)
∂

∂z
=

√
2

2

(
−

∂

∂x′
+

∂

∂z′

)
(8)

Such that centered finite-difference of partial derivatives,
in rotated grid of V(x, ω) and and P (x, ω) are found de-
pending on the rotated coordinates, using the points on the
diagonals and then combined to obtain the partial deriva-
tives according eq. (8). Now, to improve the accuracy
of the mixed-grid stencil the pressure acceleration term
ω2

K(x)
P (ω,x) may not be taken as a term implying only the

collocation point (the so-called lumped approximation), the
implementation of the mixed grid aims to reduce the nu-
merical dispersion, taking 9 points to find the values of the
derivatives, if the free term takes only the point value the
contribution of rotated grid will be diminished and the ho-
mogeneity of the solution will be lost to some degree [12].
In order to solve this issue we may approximate this term by
using a weighted average over the mixed operator stencil
nodes, as it is done in finite-element modelling ( [9], [14]).
Then in this situation the lumped mass term shall take the
form:

ω2P (ω,x)

K(x)

∣∣∣∣
(i,j)

=

ω2

K(i,j)

(
m2P(i,j) +m3Σ1(i,j) +

m4

4
Σ2(i,j)

)
(9)

With m4 = 1 − m2 + 4m3 , where m2 and m3 are co-
efficients regulating the relation between the contribution
of the terms by the conventional and rotated grid in the
lumped mass term. The other terms in the conventional
grid are given by Γ(i,j) and the rotated grid Θ(i,j). Then,
the final version of discretization of equation (7) is

m1Γ(i,j) + (1−m1)Θ(i,j) +
ω2P (ω,x)

K(x)

∣∣∣∣
(i,j)

= S(i,j) (10)

Where m1 is a coefficient regulating the relation between
the contribution of the terms by the conventional and ro-
tated grid but in the remaining divergence terms in eq. (7).
That after simplifications can be finally written as

D(i,j)P(i,j) + D1(i,j)P(i+1,j) +D2(i,j)P(i−1,j) +

D3(i,j)P(i,j+1) + D4(i,j)P(i,j−1) +D5(i,j)P(i+1,j−1) +

D6(i,j)P(i+1,j+1) + D7(i,j)P(i−1,j+1) +

D8(i,j)P(i−1,j−1) = S(i,j)

As it is well known, one of the advantages of the solution

of the problem of wave propagation in frequency domain is
that at the end, the problem can be formulated as a linear
problem for each single frequency ω. In our case, that lin-
ear problem shall have the form Ap = s Where the matrix
A is made of the coefficients D(i,j). This matrix is sparse,
indefinite, complex and square. The vector s is the source
vector discretized around the coordinates (x0, z0). Finding
p as the solution to the problem stated in Ap = s is equiv-
alent to solve the system of equations (7).

An important ingredient for the solution of equation (7) is
the boundary conditions. In this work we will assume a
simplistic approximation and will use perfectly-matched ab-
sorbing boundary conditions. In our case, we simply ex-
panded the computational domain from Nx×Nz to Nxe×
Nze where Nxe = Nx + nxpml and Nze = Nz + nxpml,
where nxpml and nzpml are the number of extra points from
the boundary condition. In the expanded region the damp-
ing functions have the form [12]

Dispersion Analysis

As it is clear from the use of finite differences, the numerical
solution requires a discretization to represent the physical
domain that in our case is implemented in a regular mesh
which has both a finite physical extent and finite number
of mesh points. However, the number of points per unit
wavelength that the approximate field encounters is not the
same in every direction, and this artificial artefact due to
the discreteness adds to the numerical dispersion of the
solution. Clearly, this is not a problem that can be ignored.
Since the solution is not exact there is already an error on
the approach, if we add this pollutive effect to the solution,
we will have, specially at long wavelengths, an inappro-
priate estimate of the solution due to the undersampling
where long wavelenghts are not sampled at high enough
spatial frequencies to provide a trustable solution at those
wavelenghts [3].

In this part we will make use of the know behaviour of
the problem of wave propagation in a homogeneous media
(eq.6). In this case for constant velocity, density and at-
tenuation in a media without source we have that the wave
equation (eq.6) may be written as

(∆ + k̃2)P (xi, zj) ≈ m1Γ(i,j)P +

(1−m1)Θ(i,j)P + Φ(m2,m3)(i,j)P = 0 (11)

Where m1,m2,m3 are parameters that we will find subject
to the condition of minimization the dispersion of the solu-
tion. To do so, remember that in this case ρ and c having a
constant value, the problem has an analytic solution, given
by P (r) = P0e

−i(k̃·r) Where k̃ is a complex wave vector
and r is the position vector. Now, If we introduce the so-
lution into the numerical scheme in equation (11), we see
that the numeric complex wavenumber can be written as
the ratio of two arbitrary functions A and B as

k̃2 =
1

∆2

A(τr, τi, θ)

B(τr, τi, θ)
(12)

Where if Gr is the number of grid points per wavelength,
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then τr = 1
Gr

is the number of wavelengths per grid point.
The same relation holds for the pseudo grid number for
pseudowavelength Gi and τi = 1

Gi
and where θ is the

propagation angle. Taking square root of eq. (12), divid-
ing by the theoretical estimate of k̃, k̃T and separating in to
real and imaginary parts, our objective function is

χ(m1,m2,m3) =

∫
V

[
(1− 1

2πτr
<

(√
A

B

)2

+ (1− 1

2πτi
=

(√
A

B

)2]
dθdτrdτi (13)

Which we try to minimize for θ ∈ [0, π/2] and τr, τi ∈
[0.001, 0.15] [2]. The result of minimization given the val-
ues of m1, m2 and m3 that minimize the dispersion, so is
m1 = 0.6667, m2 = 0.6556, m3 = 0.0889. It is important to
mention that when there is no attenuation, we get the same
result that [6] m1 = 0.5461, m2 = 0.6248, m3 = 0.09381.
Also using the values m1 = 1.0, m2 = 1.0, m3 = 0.0 we
can recover the usual 5-point scheme.
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Figure 1: Ratio between the imaginary part of the theo-

retical and numerical wave number for Ratio kNi to kTi for

1/Gr = 0.044
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Figure 2: Ratio between the real part of theoretical and nu-

merical wave number for Ratio kNr and kTr for Gi = 0.044

To study the difference between the numerical dispersion
produced by the scheme of 9-points and scheme 5-points,
we plot in figures (1) and (2) the relation between the theo-
retical and numeric wave numbers for the real and imag-
inary parts, kNr

kTr
and kNi

kTi
. We use the optimum values

found in the minimization, and plot the behaviour for dif-
ferent propagation angles, θ = 0, π

12
, π
6
, π
4

in the eq. (12)

We calculate kNr
kTr

for τr = 0.044 and τi = [0.001, 0.15], and
kNi
kTi

for τi = 0.044 and τr = [0.001, 0.15]

To understand this figure, keep in mind that according to
was the closer these ratios are to 1, the lower the nu-
merical dispersion and better the quality of the solution.
Solid lines show the ratio computed for the scheme of 9-
points while dashed lines show the ratio estimated for the
5-point scheme. The different lines for each scheme (dif-
ferent colour lines) show the result for different propagation
angles θ. Notice that for a fixed value of τr or τi the dis-
persion is smaller for the 9-point scheme. Figures (1) and
(2) clearly show that the implementation of the mixed grid
and optimization presented in section 3 provides a high ac-
curacy solution to the problem of wave propagation in a
complex visco-acoustic medium at a relatively low compu-
tational cost.

Constant density, velocity, and attenuation

In frequency domain, the Helmholtz equation with source
(eq 5), can be written as

k̃2P (ω,x, γ) +∇2P (ω,x, γ) = S(ω, γ) (14)

Where S(ω, γ) is a source. And an analytic solution to this
equation is [2]

P (ω,x, γ) = iπH
(2)
0

(
ω − iγ
c

r

)
S(ω, γ) (15)

Where r accounts for the distance between the source
and any point with coordinates (x, z) and is given by r2 =

(x− x0)2 + (z− z0)2 With x0 and z0 the position of source.
In order to compare the results of this analytic solution with
results obtained with the 9-point and 5-point schemes, we
compute the value of the P-wave amplitude in an area of
2[Km]×2[Km] by placing a line of receivers at 100 [m] and
1100[m], finding the waveform response at that point. The
constant velocity of the media is 2100 [m/s], the Ricker fre-
quency is 30 [Hz], the constant quality factor is Q = 50, us-
ing the damping function for Kolsky’s Model , the cell size
∆ is λ

Gr
, where Gr = 7, Therefore, τr ≈ 0.14, which is

within our range of values for τr, [0.001, 0.15]. The position
of the source is x0 = 1[Km] and z0 = 1[Km].

In Fig. 3 we show the normalized amplitude of the P-wave
as a function of the offset for shots in the receivers at
1100[m] deep (near the source) and difference between
P-wave found by the analytic solution and 9-point scheme
and 5-point scheme, at three different frequencies. In Fig. 4
we show the normalized amplitude of the P-wave as a func-
tion of the offset for shots in the receivers at 100[m] deep
(far from the source) and difference between P-wave found
by the analytic solution and 9-point scheme and 5-point
scheme, at different frequencies. Amplitudes are normal-
ized as dividing by its maximum value. The solid line is the
analytic solution, the dashed line is the solution for 5-point
scheme and the points is a solution for 9-point scheme. It

VII Simposio Brasileiro de Geofı́sica



S.K. Avendaño, M.A. Ospina, J.C. Muñoz Cuartas, H. Montegranario 5

is worth to note that the solution obtained by the 9-point
scheme is the closest to the analytic solution.
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Figure 3: Shots propagating in medium with constant ve-
locity, density and attenuation for f = 40 [Hz] and receivers
in 1100 [m] deep (close to the source)
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Figure 4: Shots propagating in medium with constant ve-
locity, density and attenuation for f = 40 [Hz] and receivers
in 100 [m] deep (away from the source)

In order to avoid such dispersion in the solution for the 5-
point scheme, we would have to use a larger amount of
points [6] and that would mean a greater computational
cost. In that sense we can conclude that the scheme 9-
points provides an appropriate solution at an acceptable
computational cost.

Media with variable velocity, density and attenua-
tion

The density, in this case, was calculated following the re-
lation [11]. In this case the values for the quality factor
associated with the different values of the velocity in the
multiple layer media are modelled according [8]. For this
test we decided to use a complex velocity profile. As it can
be seen in Figure (5), in this case we have several wedge
and important discontinuities with velocity contrast ranging
from ∼ 1.2 to ∼ 3. For this setup the source is close to the

surface at 15 [m] depth.
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Figure 5: Geometric configuration of the velocity profile

In figures 6, 7 and 8 we show the real, imaginary part and
modulus of the P-wave field for frequencies of 5, 25 and 50

[Hz]. The result is less uniform than in the previous figures,
revealing a natural response to the anisotropy of the veloc-
ity field. One can see how the features of the velocity field
can distort the wavefront, even at large distances. Numer-
ical dispersion have been minimized, so most of what can
be seen is real response of the wave propagating inside
the complex media.

Conclusions and discussion

In this work we have studied the propagation of waves in
a visco-acoustic medium through explicit modelling of the
attenuation making use of damping functions that allow for
dispersion that depends on the quality factor Q and imple-
mented a finite difference scheme to solve the problem in
frequency domain. Special care have been taken on the
pollutive numerical dispersion issues of the modelling, for
which we have used a mixed grid technique and optimal
setup of the intercalated grids to minimize numeric disper-
sion.

We have shown the ability of the optimization scheme to
minimize the numerical dispersion for the visco-acoustic
case, and show that indeed the mixed grid scheme (9-
point) with the optimization scheme provides solutions that
are very much close to the real solution than the solutions
obtained for the classic 5-point scheme. Comparison of the
numeric scheme with the analytic solution obtained for the
case of wave propagation in a homogeneous medium has
shown the advantages of the optimized mixed grid scheme.
As it was shown in figures 3 and 4 the optimized 9-point
mixed grid scheme provides solutions that are in general a
few percent away from the analytic solution, while the stan-
dard 5-point scheme deviates notoriously from the analytic
solution even for this simplistic case.

We have also shown that this modelling works quite well in
models of high velocity/density contrast, commonly found
in the field. We have shown that the explicit modelling of at-
tenuation allows to model easily the superposition of com-
plex velocity fields and to resolve properly the behaviour of
waves in such scenarios. We have verified the behaviour of
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the method for different well known attenuation-dispersion
models (Kolsky, Cole-Cole, General, [15]), and in particular
noticed the clear difference between the attenuation of the
amplitude of the wavefront due to the distribution of energy
in the wavefront and the extra attenuation introduced by the
damping functions.

This kind of behaviour has a notorious importance for
methods like FWI. In the case of field exploration, sub-
surface information can be obtained through the use of
Full Waveform Inversion. The quality of the information ac-
quired through the inversion is off course dependent of the
ability of the model to approach the physical properties of
the medium.
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