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Abstract   
The classic poroelastic theory of Biot, developed in 
1950's, describes the propagation of elastic waves 
through a porous media containing a fluid. This 
theory has been extensively used in various fields 
dealing with porous media: seismic exploration, 
oil/gas reservoir characterization, environmental 
geophysics, earthquake seismology, etc. In this work 
we use the Ursin formalism to derive explicit 
formulas for the analysis of propagation of elastic 
waves through a stratified 3D porous media, where 
the parameters of the media are characterized by 
piece-wise constant functions of only one spatial 
variable, depth. There is considered the low-
frequency limit of the Biot equations. 

Introduction 
Poroelastic models are used in geophysics and petroleum 
engineering, where porous media filled with fluid and/or 
gas is of great interest. The best-known poroelastic theory 
was developed by Maurice Biot, see Biot (1956a) and Biot 
(1956b). 
 
There are many works devoted to the development and 
application of analytical/semi-analytical methods for wave 
propagation analysis in stratified elastic media, see, for 
instance, Thomson (1950), Haskell (1953), Brekhovskih 
(1960), Kunetz and d’Erceville (1962), Ursin (1983), and 
Molotkov (1984). 
 
The development of similar methods in the case of 
stratified porous media is very important too, see Allard et 
al. (1989), Baird et al. (1999), Molotkov (2002), and 
Carcione (2007).  
 
The Ursin formalism gives a unified treatment of 
electromagnetic waves, acoustic waves, and the isotropic 
elastic waves in plane layered media. Recently, this 
formalism was applied to the Pride equations for 
simulation of the electrokinetic phenomena in layered 
media, see White and Zhou (2006).  
 
In this work we apply Ursin’s method for solving the Biot 
system in the case of the 3D poroelastic plane layered 
media. In the exposition of results, we follow basically to 
the White and Zhou work. Although the results obtained 
by White and Zhou allow, under certain conditions, to split 
Pride’s equations and select only the poroelastic part, we 
examine the case of a more complete poroelastic system, 
characterized by presence in the Darcy law of an inertial 
force connected with the effective density of pore fluid. 

Method 
1. Problem. We shall consider wave propagation in a 

porous half-space 
   
R = Rk

k=1

k=N

∪ , composed with stratified 

layers    Rk = x = (x1,x2 ,x3 ≡ z)∈R3 : zk < z < zk+1{ } , where 

   0 = z0 < z1 <!< zN+1 = ∞ . Let   u = (u1,u2 ,u3)  and 

  w = (w1,w2 ,w3)  be the solid and relative fluid 
displacements, respectively. The Biot equations (low-
frequency case) in the time frequency (ω ) domain, at 

each point  x ∈R , are  (time dependence of  e− iωt  is 
assumed) 

 

  

−iω (ρv + ρ f q) = ∇⋅τ + f

q = κ
η

(−∇p + iωρ f v + iωρEq + g)

−iωτ = (λ∇⋅v +C∇⋅q)I +G(∇v +∇vT )
iω p = C∇⋅v + M∇⋅q

  (1) 

Here:   v = −iωu,q = −iωw  are the solid and relative fluid 

velocities,   f = ( f1, f2 , f3)  and   g = (g1,g2 ,g3)  the forces 
imposed on the solid and on the pore fluid, respectively; 
τ , the stress tensor;  p , the pressure in the pore fluid; 

  λ,G , the Lamé coefficients;   C, M , the Biot moduli; ρ , 

the bulk density; 
 
ρ f , the density of the pore fluid;  ρE , the 

effective density of the pore fluid; κ , the permeability; η , 
the pore fluid viscosity;  I , is the  3× 3  identity matrix. All 
the material parameters are represented by piece-wise 
constant functions, depended only on the depth 
coordinate  z , with the discontinuities at the points 

   z = zk ,k = 1,2,…, N .  

At layer boundaries we suppose that the following 
functions are continuous: 

   vi ,q3, p,τ i3,i = 1,2,3   (2) 

The boundary conditions at the free surface   z = 0  are 

   p = τ i3 = 0,i = 1,2,3   (3) 
And finally, at the infinity the solution satisfies the 
following radiation conditions: 

 
  
lim
x→∞

(v,q) = 0   (4) 

2. Ursin format. Consider the Fourier transform in the two 
coordinates   x1,x2   
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X̂ (k1,k2 ,z) = Fx1x2

( X ) ≡ e− i(k1x1+k2x2 ) X (x1,x2 ,z)dx1 dx2
R2
∫∫   

Let   (k1,k2 )T  be the horizontal wavenumber and 

  k = k1
2 + k2

2 ,γ = kω −1 . Applying the Fourier transform to 
(1) we obtain the EDO’s system represented in the terms 
of   f̂ , ĝ, v̂, q̂,τ̂ , p̂ .  

Let 

 

  

Ω = k −1

k1 k2 0

−k2 k1 0

0 0 k

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

The EDO’s obtained can be simplified if we define 

    !x = Ωx, !v = Ωv̂, !q = Ωq̂, !τ = Ωτ̂ΩT , !f = Ωf̂ , !g = Ωĝ, !p = p̂  

A straightforward calculation uncouples this system 

 
  
dΦ(m)

dz
= −iω M (m)Φ(m) + S (m) ,m = 1,2   (5) 

where   Φ(m)  are the   2nm - vectors (  n1 = 3,n2 = 1 ),  

defined as 

    Φ
(1) = ( !v3, !τ13,− !q3, !τ 33, !v1, !p)T ,Φ(2) = ( !v2 , !τ 23)T   

  S (m)  are the source   2nm -vectors, and   M (m) are the 

  2nm × 2nm -matrices 

 

  

M (m) =
0 M1

(m)

M2
(m) 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (6) 

with symmetric  nm × nm -matrices   M1
(m) , M2

(m) .  

For Systems 1 and 2 the submatrices and the 
corresponding source vectors are 

 

---------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

       

   

System1: M1
(1) =

−βM βγ (C 2 − λM ) −βC

βγ (C 2 − λM ) ρ +
iωρ f

2κ
η − iωρEκ

− 4βγ 2G(C 2 − M (λ +G)) 2βγ GC −
iωρ fγκ

η − iωρEκ

−βC 2βγ GC −
iωρ fγκ

η − iωρEκ
−β(λ + 2G)+ iωγ 2κ

η − iωρEκ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

M2
(1) =

ρ γ −ρ f

γ G−1 0

−ρ f 0
−η + iωρEκ

iωκ

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

, S (1) = (0,− !f1 −
iωρ fκ

η − iωρEκ
!g1,

ikκ
η − iωρEκ

!g1,− !f3,0, !g3)T

System2 : M1
(2) = G−1,M2

(2) = ρ −Gγ 2 +
iωρ f

2κ
η − iωρEκ

,S (2) = (0,− !f2 −
iωρ fκ

η − iωρEκ
!g2 )T

            (7) 

where   β = (C 2 − M (λ + 2G))−1 . Once  Φ(1)  and  Φ(2)  have been determined, we may compute 

     

   

!q1 =
κ

η − iωρEκ
(−ik!p + iωρ f !v1 + !g1), !τ11 = β −4γ G(C 2 − M (λ +G)) !v1 + (C 2 − λM ) !τ 33 + 2GC!p{ }

!τ 22 = β −2γ G(C 2 − λM ) !v1 + (C 2 − λM ) !τ 33 + 2GC!p{ }, !q2 =
iωρ fκ

η − iωρEκ
!v2 +

κ
η − iωρEκ

!g2 , !τ12 = −Gγ !v2

           (8) 

----------------------------------------------------------------------------------------------------------------------------
3. Diagonalization. Let’s give briefly a derivation of the 
diagonalization procedure. We consider matrices of the 
form (6), where for simplicity we drop the superscript   (m) .  

Assume that   M1M2  has  n  distinct nonzero eigenvalues 

  
λ j

2 ,   j = 1,2,…,n , with associated eigenvectors 
 
a j , 



MÁRCIA AZEREDO AND VIATCHESLAV PRIIMENKO  


VII Simpósio Brasileiro de Geofísica 
 

3 

   j = 1,2,…,n , such that 
  
a j

T M2aj = λ j . Here
  
λ j = λ j

2  

with the branch chosen so that 
  
Im(λ j ) ≥ 0  and 

  
λ j > 0  is  

real if 
 
λ j is real. Define

  
bj = λ j

−1M2aj . This vector is an 

eigenvector of   M2 M1  with eigenvalue 
  
λ j

2 . Using 

symmetricity of   M1, M2  we obtain 
 
a j

T bi = δ j
i , where  δ j

i  

is the Kronecker delta.  

Let   L1  be the  n× n  matrix whose  j -th column is 
 
a j , 

and let   L2  be the  n× n  matrix whose  i -th column is  bi , 

then   L1
−1 = L2

T , L2
−1 = L1

T . Introduce  

    Λ = diag(λ1,λ2 ,…,λn )   

Then   L2Λ = M2L1  and   M1L2 = L1Λ , which implies  

   M1 = L1ΛL1
T , M2 = L2ΛL2

T   (9) 

Introducing the diagonal matrix   
!Λ = diag(Λ,−Λ)  and 

using (9), we finally obtain 

    M = L !ΛL−1   (10) 

 where  

 

  

L = 1
2

L1 L1

L2 −L2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, L−1 = 1
2

L2
T L1

T

L2
T −L1

T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

The explicit formulas for 
  
λ j ,aj ,bj  for Systems 1 and 2 

are given in Appendix.  
 
4. Reflection and transmission matrices. Firstly, we 
consider a homogeneous, source-free region of space. 
Dropping   (m)  we have a   2n -dimensional system of the 
form (5) with  M  constant and   S = 0 . Let  

   Φ = LΨ and Ψ = (U , D)T   (11) 
where   U , D  are  n -vectors, characterizing upgoing ( U ) 
and downgoing ( D ) waves. Then 

 
  
Ψ(z) = e− iωΛ( z−z0 )U (z0 ),eiωΛ( z−z0 )D(z0 )( )T

  (12) 

 where   z0  is a fixed point in the same source-free region. 
Next consider an interface at  z , where the material 
parameters vary discontinuously across  z . We denote by 
±  quantities evaluated at   z± = z ± 0 . Since Φ  is 
continuous across  z , we obtain  

    Ψ± = J ±1Ψ∓   (13) 
 
where the jump matrix is  

 

  

J = (L+ )−1 L− ≡
J A JB

JB J A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, J −1 =
J A

T −JB
T

−JB
T J A

T

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

and   J A, JB  are the  n× n -matrices 

 
  
J A =

1
2

L2
+( )T

L1
− + L1

+( )T
L2
−⎡

⎣⎢
⎤
⎦⎥
, JB = 1

2
L2
+( )T

L1
− − L1

+( )T
L2
−⎡

⎣⎢
⎤
⎦⎥

  

Next, we consider a stack of layers    0 < z1 <…< zN < ∞ . 

We have 
  
U N

− , DN
−( )T

= JN
−1 0, DN

+( )T
, where we have used 

that there is no upgoing wave below the last interface at 

 z = zN .  So, we obtain 

   U N
− = ΓN DN

− , DN
+ = TN DN

−   (14) 
where 

 
  
ΓN = − JB,N

T( ) J A,N
T( )−1

,TN = J A,N
T( )−1

  (15) 

Here  ΓN  is the reflection matrix and  TN  is the 

transmission matrix from the last interface  z = zN , 

respectively. Let  j < N  and 
  
Δz j = z j+1 − z j , 

   j = 1,2,…, N −1 , is the layer thickness. Then by jumping 
across the layer boundary and using (12), (13) we obtain 

 

  

U j
− = J A, j

T eiωΛ jΔz jU j+1
− − JB, j

T e− iωΛ jΔz j Dj+1
−

Dj
− = −JB, j

T eiωΛ jΔz jU j+1
− + J A, j

T e− iωΛ jΔz j Dj+1
−

  (16) 

Define reflection and transmission matrices 
  
Γ j ,Tj  by 

 
  
U j

− = Γ j Dj
− ,U j

+ = Tj Dj
−   (17) 

From (16), (17) we obtain by induction 

 

   

Γ j = J A, j
T !Γ j+1 − JB, j

T( ) −JB, j
T !Γ j+1 + J A, j

T( )−1

Tj = Tj+1e
iωΛ jΔz j −JB, j

T !Γ j+1 + J A, j
T( )−1

  (18) 

where 
   
!Γ j+1 = eiωΛ jΔz jΓ j+1e

iωΛ jΔz j , and 
  
Γ j+1  is symmetric. 

Thus, all the reflection and transmission matrices can be 
calculated by (18), starting with (15).  
 
5. Sources and boundary conditions. Consider a   2n -
dimensional system of the form (5) with   (m)  omitted. Let 
the source be of the form 

   S = S0δ (z − zs )+ S1 ′δ (z − zs )   (19) 

with   S0 ,S1  independent of  z . 

Define  n -vectors 
  
SA,SB : SA,SB( )T

= iω MS1 − S0 . Using 

this formula we obtain the following jump condition across 
the source  

 
  
Φ(zs

− ) = Φ(zs
+ )+ SA,SB( )T

  (20) 
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Inserting a fictitious layer boundary at  z = zs
+  we compute 

the reflection matrix   Γ s ≡ Γ(zs
+ ) . Since the material 

properties do not change at  zs , we have 

 
  
Ψ(zs

+ ) = Γ sDs , Ds( )T
  (21) 

where   Ds ≡ D(zs
+ ),Us ≡U (zs

+ ) . Using (11), (20) and (21)
we obtain 

 
  
Ψ(zs

− ) = Γ sDs , Ds( )T
+ 1

2
L2

T SA + L1
T SB , L2

T SA − L1
T SB( )T

  

This expression may now be propagated upwards 
through layers, using (12) and jumped upwards across 
layers boundaries until we reach the free surface at 

  z = 0+ . Then  n  boundary conditions at   z = 0  can be 
used to find the  n  unknowns  Ds .  

Consider one particular case when   zs ∈(0,z1) . In this 
case  

 

  

Ψ(0+ ) = eiωΛzsΓ sDs ,e
− iωΛzs Ds( )T

+

+ 1
2

eiωΛzs L2
T SA + L1

T SB( ),e− iωΛzs L2
T SA − L1

T SB( )( )T  

 (22) 
Define  

 
  
Φ(0+ ) = GAΦ0 ,GBΦ0( )T

  (23) 

For System 1, let 

 

   

Φ0
(1) = !v3,− !q3, !v1( )z=0+

T

GA
(1) =

1 0 0
0 0 0
0 1 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,GB
(1) =

0 0 0
0 0 1
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  

We can check that (23) holds for System 1 with the 
boundary conditions    

!τ13 = !τ 33 = !p = 0  at the free surface 

  z = 0 .  

For System 2, let  

   Φ0
(2) = !v2(0+ ) ,   GA

(2) = 1,GB
(2) = 0  

Then it may be checked that (23) holds for System 2 with 
the boundary condition  

!τ 23 = 0  at the free surface   z = 0 . 
Now using (11), (22) and (23) we obtain 

 

  

Φ0 = eiωΛzsΓ se
iωΛzs L2

TGA − L1
TGB( )− L2

TGA + L1
TGB( )( )−1

×

×eiωΛzs Γ s L2
T SA − L1

T SB( )− L2
T SA + L1

T SB( )( )
Ds =

1
2

eiωΛzs L2
TGA − L1

TGB( )Φ0 −
1
2

L2
T SA − L1

T SB( )
 

 (24) 

In particular, when   zs = 0+  we get  

 

  

Φ0 = (Γ s − I )L2
TGA − (Γ s + I )L1

TGB( )−1
×

× (Γ s − I )L2
T SA − (Γ s + I )L1

T SB( )
  (25) 

 Φ0  defines all of Φ  at the free surface, and 

  Ds ,Us = Γ sDs give all of Φ  just below the source. Now 

we are able theoretically to compute Φ in any  z ∈R+  by 
propagating trough the layers using (12) and (13).  

Remark. Propagation of an upward-going wave in the 
downward direction will be unstable numerically using 
(12), because the complex exponentials grow rather than 
decay with distance. Then numerically, one has to obtain 

 U  from  D  using 
 
Γ j , or the transmission matrix

 
Tj .  

Inverting the rotation transform, we can calculate the hat 
(^) variables, i.e., 

    v̂ = ΩT !v, q̂ = ΩT !q,τ̂ = ΩT !τΩ, p̂ = !p   (26) 

The matrices for Systems 1 and 2 depend only on the 
magnitude  k . However, the transformation (26) depends 

on   k1,k2 . For any function   ξ̂(k)  let 

 
  
Ξ j1, j2

ξ̂( ) ≡ Fx1x2

−1 k1
j1k2

j2ξ̂(k)( ) = (−i) j1+ j2 ∂x1

j1 ∂x2

j2 Fx1x2

−1 ξ̂(k)( )   

We can compute these quantities as Hankel transforms in 
the cylindrical coordinates   r,θ ,z . Define 

 
  
Bj1, j2

(ξ̂ ) = 1
2π

k j1

0

∞

∫ J j2
(kr)ξ̂(k)dk   

 where  Jn  is the Bessel function and   j1, j2  are 
nonnegative integers. Then 

 

  

Ξ0,0 = B1,0 ,Ξ1,0 = icosθB2,1,Ξ0,1 = isinθB2,1

Ξ1,1 = sinθ cosθ B3,0 −
2
r

B2,1

⎛
⎝⎜

⎞
⎠⎟

Ξ2,0 = cos2θB3,0 −
cos2θ

r
B2,1

Ξ0,2 = sin2θB3,0 +
cos2θ

r
B2,1

  (27) 

see White and Zhou (2006) for details. These formulas 
are used to get the solution in real space.  
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Examples 

1. Dynamite source. A dynamite source imposed on the 
solid and the fluid can be defined in the following form 

   f (x) = g(x) = −h(ω )∇δ (x − xs )   

where δ  is the Dirac function,   xs = (0,0,zs )  is the source 

position and   h(ω )  is the spectrum of the seismic 

moment. Applying the Fourier transform 
  
Fx1x2

we obtain 

 
  
f̂ = ĝ = −h(ω ) ik1δ (z − zs ),ik2δ (z − zs ), ′δ (z − zs )( )T

  

and rotation by Ω  yields 

 
   
!f = !g = −h(ω ) ikδ (z − zs ),0, ′δ (z − zs )( )T

  (28) 

Substitution of (28) into   S (1)  of (7) yields the source for 
System 1, in the form of (19), with  

 

  

S0
(1) = h(ω ) 0,ik −

ωρ f kκ
η − iωρEκ

, k 2κ
η − iωρEκ

,0,0,0
⎛

⎝⎜
⎞

⎠⎟

T

S1
(1) = h(ω ) 0,0,0,1,0,−1( )T

 

 (29) 

Substitution of (28) into (7) shows that   S (2)  is zero, then 

   !
"u2 , !τ 23  associated with System 2 are zero too. This is to 

be expected result because System 2 is related to SH-
waves, which are not excited by the dynamite source. 

Substitution of (29) into 
  

SA,SB( )T
= iω MS1 − S0  gives 

 

  

SA
(1) = iβh(ω ) ω (C − M ),2kG( M −C),ω (λ + 2G −C)( )T

SB
(1) = 0,0,0( )T

 

 (30)   

Formulas (30) may be used in (24) or (25) for a shallow 
source, to obtain all the tilde (~) functions. To invert 
rotation Ω , using (26), note that from (8) and the 
vanishing of System 2,    !v2 , !q2 , !τ12 , !τ 23  are identically zero. 

All the remaining tilde (~) functions depend of  k  only and 
can be calculated by the following formulas 

 

   

v̂1 =
k1

k
!v1, v̂2 =

k2

k
!v1, v̂3 = !v3

q̂1 =
k1

k
!q1, q̂2 =

k2

k
!q2 , q̂3 = !q3

τ̂11 =
k1

2 !τ11 + k2
2 !τ 22

k 2 ,τ̂12 =
k1k2( !τ11 − !τ 22 )

k 2

τ̂ 22 =
k2

2 !τ11 + k1
2 !τ 22

k 2 ,τ̂13 =
k1
!τ13

k

τ̂ 23 =
k2
!τ13

k
,τ̂ 33 = !τ 33, p̂ = !p

  (31)  

Then the Fourier transform 
  
Fx1x2

 can be inverted in 

cylindrical coordinates (  r,θ ,z ) using (27) to obtain the 
solid and fluid velocities 

 

   

v = iB1,1( !v1)( )er + B1,0 ( !v3)( )ez

q = iB1,1( !q1)( )er + B1,0 ( !q3)( )ez

  (32) 

where   er ,ez  are unit vectors in the   r,z  coordinate 
directions, respectively, and the stress tensor 
components and the pressure 

 

   

τ11 = Ξ2,0 (k −2 !τ11)+Ξ0,2 (k −2 !τ 22 ),τ12 = Ξ1,1(k −2( !τ11 − !τ 22 ))

τ 22 = Ξ0,2 (k −2 !τ11)+Ξ2,0 (k −2 !τ 22 ),τ13 = Ξ1,0 (k −1 !τ13)

τ 23 = Ξ0,1(k −1 !τ13),τ 33 = Ξ0,0 ( !τ 33), p = Ξ0,0 ( !p)

 

 (33)   

2. Vertical source. We next consider a vertical point 
source acting on the free surface   z = 0 , i.e., 

  f (x) = g(x) = (0,0,1)T h(ω )δ (x1)δ (x2 )δ (z − zs )  

where   zs → 0+ puts the force on the free surface. This 
models hammer, weight drop, and vibroseis sources. 
Applying the Fourier transform 

  
Fx1x2

 and rotation Ω  we 

arrive at 

    
!f = !g = f̂ = ĝ = (0,0,1)T h(ω )δ (z − zs )   (34) 

Substitution of (34) into (7) yields the source for Systems 
1 and 2 in the form  

   S
(1) = (0,0,0,−1,0,1)T h(ω )δ (z − zs ), S (2) = (0,0)T   

Thus, all the variables in System 2 are zero, as it was in 
the case of dynamite source. From (19) and definition of 

  SA,SB  we obtain 

 
  
SA

(1) = 0,0,0( )T
, SB

(1) = 1,0,−1( )T
h(ω )   

Now all the tilde variables at the free surface may be 
computed using (25) as   zs → 0+  and propagated 

anywhere else in space. Note that   SA
(1) ,SB

(1)  are 

independent of   k1,k2 , so the tilde variables depend only 

on  k  and not on wave number direction. Therefore, 
similar to dynamite we can transform to the hat variables 
using (31) and transform back to the spatial variables 
using (32) and (33). 

Conclusion 
Based on the Ursin method, we have derived explicit 
formulas of the solution to a boundary-value problem 
formulated for Biot’s system, which can be used as the 
basis of a numerical algorithm and study of the 
propagation of elastic waves in porous plane-layered 
media.   
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Appendix 

System 1. There are three modes: fast compressional wave ( λ1
(1) ), Biot slow wave ( λ2

(1) ), and vertical shear wave ( λ3
(1) ). 

  

Eigenvalues :

(λ j
(1) )2 = −γ 2 + β Cρ f −

Mρ
2

− i(λ + 2G)
η − iωρEκ

2ωκ
⎛
⎝⎜

⎞
⎠⎟
± β

2
i(λ + 2G)

η − iωρEκ
ωκ

− Mρ
⎛
⎝⎜

⎞
⎠⎟

2

− 4 Mρ f − iC
η − iωρEκ

ωκ
⎛
⎝⎜

⎞
⎠⎟

Cρ − (λ + 2G)ρ f( ), j = 1,2

(with (+) for m=1  and (-) for m=2), and (λ3
(1) )2 = −γ 2 +G−1 ρ +

iωκρ f
2

η − iωρEκ
⎛

⎝
⎜

⎞

⎠
⎟

Eigenvectors :

a j
(1) = a j −1,2Gγ ,ζ j( )T

, j = 1,2,a3
(1) =

a3

λ3
(1) γ ,G(λ3

(1) )2 −Gγ 2 ,−
iωκγρ f

η − iωρEκ
⎛

⎝⎜
⎞

⎠⎟

T

bj
(1) =

a j

λ j
(1) 2Gγ 2 − ρ − ρ fζ j ,γ ,ρ f + iζ j

η − iωρEκ
ωκ

⎛
⎝⎜

⎞
⎠⎟

T

, j = 1,2,b3
(1) = a3 2Gγ ,1,0( )T

where

ζ j =
Cρ − (λ + 2G)ρ f

(λ j
(1) )2 + γ 2

β
−Cρ f + i(λ + 2G)

η − iωρEκ
ωκ

,a j =
λ j

(1)

ρ + 2ρ fζ j + iζ
j

2 η − iωρEκ
ωκ

, j = 1,2,a3 =
λ3

(1)

Gγ 2 +G(λ3
(1) )2

 

System 2. There is the horizontal shear wave mode only. 

  
 (λ (2) )2 = −γ 2 +G−1 ρ +

iωκρ f
2

η − iωρEκ
⎛

⎝
⎜

⎞

⎠
⎟ ,a(2) = 1

Gλ (2) ,b(2) = Gλ (2)

 


