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Abstract

This paper presents a new iterative method for
solving axi-symmetric integral equations. The
theory is developed for a two-dimensional axi-
symmetric inhomogeneous medium. Here to test the
accuracy and efficiency of the method, a simple one-
dimensional layered medium geometry is assumed.
In this case the problem reduces to sequences
of one-dimensional convolutions using fast Fourier
transforms along the axial direction z. The equation
is renormalized to help insure that the Neumann
series iterations converge, even in the limit of
high contrasts. The transforms are designed to
mimic their continuous counterparts on semi-infinite
intervals. Validation includes comparisons with well-
known analytical results for layered earth models.

Introduction

Integral equation solutions using finite-element or moment
methods result in full matrices usually limiting such
methods to cases where relative anomaly volumes are
small. For linearized solutions, the convolutional form of the
integral equation is often exploited by Fourier transforming
the equation into the spatial frequency domain to perform
the convolution between the Green’s function and the
volume current using FFT’s (fast Fourier transforms). The
integral equation naturally results in order 1 Fourier-Bessel
transforms. These transforms however are not directly
amenable to Cartesian coordinate FFT computation.

A form of the integral equation this method is designed to
solve is given by(Howard, 2014). This type of equation
is used to model induction logging tool response in
borehole geophysical applications(Chew,1991). In order
to realize the time savings fast Fourier transform operation
count proportional to N log2 N, it is necessary to keep the
computation in memory. For three-dimensional problems,
work stations can provide this type of CPU memory
resource (perhaps 128 to 256 GB). In the case of
axial-symmetry, the integral equation for the electric field
component eφ (x) is pseudo-scalar and is shown to take the
form

eφ (x) = eφ ,0(x)+
1

2π

∫
g1(x,x′) j(x′)d3x′ , (1)

where the volume current j(x) depends on the unknown

electric field eφ (x) and is defined in terms of the profile
function p(x) , i.e.,

j(x) = p(x)eφ (x) ,
p(x) = k2(x)− k2

b ,
(2)

and the integration is over all space. The azimuthally
symmetric Green’s function in equation (2) for a loop
source transmitter is given by

g1(x,x′) =
∫ 2π

0
cos(φ −φ

′)
eikbR

4πR
dφ
′ , (3)

where R = |x − x′| and kb is the intrinsic quasi-static
electromagnetic background wavenumber in units of [m−1].
The known background electric field eφ ,0(x) is the solution
to the homogeneous space problem with wavenumber kb =
(iωµ0σb)

1/2 with Im(kb)≥ 0 for a time factor of e−iωt . Here
σb [S/m] is the earth model background conductivity, µ0 =
4π × 107 [H/m] is the magnetic permeability of free space,
ω = 2π f , and f is the transmitter frequency in Hz. For this
analysis we use the Green’s function g1(x,x′) in the form
(howard,2014), p. 11

g1(x,x′) =
∫

∞

−∞

dKzeiKz(z−z′)
∫

∞

0
dKρ Kρ

J1(Kρ ρ)J1(Kρ ρ ′)

K2− k2
b

.

(4)

Note that the integral equation defined by equation (1)
is a convolution of the Green’s function and the volume
current j(x′). Substitution of representation (4) into integral
equation (1) thus gives the transformed integral equation
for an axi-symmetric 2D formation

E(Kρ ,Kz) = E0(Kρ ,Kz)+G(K)J(Kρ ,Kz) , (5)

where

G(K) = 1/(K2− k2
b) , (6)

and K2 = K2
ρ +K2

z and where

E(n)(Kρ ,Kz)=
∫

∞

−∞

e−iKzzdz
∫

∞

0
ρJ1(Kρ ρ)e(n)

φ
(ρ,z)dρ , n= 0,1, · · · .

(7)

The function J(Kρ ,Kz) is the transform of the volume current
defined as
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J(Kρ ,Kz) =
∫

∞

−∞

e−iKzz′dz′
∫

∞

0
ρ
′J1(Kρ ρ

′) j(ρ ′,z′)dρ
′ , (8)

with analogous transform definitions for the background
and total electric fields. It is interesting and gratifying to
note that the form of integral equation given by (5) or (12)
is the same as that for the scalar field 2D equation given by
equations (7.11), (7.12) and (7.13) in (howard, 2014).

The more simple one-dimensional layered medium case
where the profile varies only in the z direction (p(x) = p(z))
results in the simplification

J(Kρ ,Kz) = P(Kz)∗E(Kρ ,Kz) . (9)

In this case, a more explicit form of the integral equation (5)
in (Kρ ,z) space is

E(Kρ ,z) = E0(Kρ ,z)+
∫

∞

−∞

dz′
e−γ|z−z′|

2γ
E(Kρ ,z′) p(z′) . (10)

where

γ = (K2
ρ − k2

b)
1/2, Rl(γ)≥ 0 . (11)

In the case of a two coil induction sonde with transmitter
and receiver coils separated by the axial distance L, i.e.
ZT = ZR + L, the induction log reponse over the entire
formation defined by the profile p(z) can be computed by
convolution. In fact, an iterative solution to the 1D integral
equation (10) is simply, at each iteration, the convolution

E(n)(Kρ ,z)=E0(Kρ ,z)+G(Kρ ,z)∗
(
E(n−1)(Kρ ,z)p(z)

)
, (12)

for n = 1,2, · · · , beginning with initial estimate E(0)(Kρ ,Kz) =
E0(Kρ ,Kz).

To enhance the iterative convergence of the Neumann
series solution, equation (12) is rewritten in the
renormalized form

E(n)(Kρ ,z) = N(Kρ ,z)E0(Kρ ,z)+N(Kρ ,z)
[
G(Kρ ,z)∗(

E(n−1)(Kρ ,z)p(z)
)
−M(Kρ )E(n−1)(Kρ ,z)

]
,

n = 1,2,3 · · · .
(13)

where

N(Kρ ,z) = 1/(1−M(Kρ ,z)) ,
M(Kρ ,z) = G(Kρ ,z)∗ p(z) . (14)

Beginning with the known starting point E(0)(Kρ ,z) =
E0(Kρ ,z), the idea is to iteratively solve the one-
dimensional integral equation (13) for E(K`,z) Nr times, one
for each quadrature abscissa K`, ` = 1,2, · · · ,Nr and then,

after the iterative procedure, compute the solution to the
integral equation by numerical quadrature of the Fourier
Bessel- transform, i.e.

eφ (ρ,z) =
Nr

∑
`=1

J1(K`ρ)K`E(K`,z)w` . (15)

Quite generally, to consider the numerical convergence of
the iterative solution to integral equation (1), rewrite it in
terms of the linear integral operator L, i.e.,

eφ (x) = eφ ,0(x)+Leφ (x) (16)

Then formally, the iterative solution, if it exists, takes the
form

eφ (x) = eφ ,0(x)+Leφ ,0(x)+L2 eφ ,0(x)+ · · · ,

=
[
I−L

]−1
eφ ,0(x) .

(17)

A necessary condition for the convergence of the Neumann
series solution given by equation (17) is that the norm of the
operator be less than one, i.e.,

|L|< 1 . (18)

The convergence depends on the profile function p(x) and
the singularity of the Green’s function g1(x,x′). Habashy
(Habashy,1993), by modifying the equation, softens the
singularity in the Green’s function, resulting in a simple
method to enhance convergence. His idea is to modify
the defining equation (1) by adding and subtracting the
term 1

2π
eφ (x)

∫
g1(x,x′)p(x′)d3x′ and thus obtain a form of

the integral equation more amenable to Neumann iteration,
e.g.,

eφ (x) = n(x)eφ ,0(x)+n(x) 1
2π

∫
g1(x,x′) p(x′)(

eφ (x)− eφ (x′)
)

d3x′ ,
(19)

where the re-normalization function is defined as

n(x) = 1/
(

1−m(x)
)
, (20)

and where the associated normalization function is

m(x) =
1

2π

∫
g1(x,x′) p(x)d3x′ . (21)

A stair-case one-dimensional layered medium profile
function p(z) = k2(z)− k2

b for M regions with ordered bed-
boundaries zm, such that zm > zn when m > n and for M > 2
can be written in the form

p(z)= k2
1 u(z1− z)+

M−1

∑
m=2

rect
( z−d(+)

m

2d(−)
m

)
k2

m +u(z− zM)k2
M− k2

b ,

(22)
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Figure 1: Two-coil Apparent Conductivity σa for the array
defined in the legend as a function of z.

where the step function u(z) is defined as

u(z) =
{

1, z≥ 0,
0, otherwise. (23)

The iterative model defined by equation (12) is a
generalization of the linearized mode developed l in
(Howard,1986) and (Howard,1987). Beginning with the
known starting point E(0)(Kρ ,z) = E0(Kρ ,z), as given by
equation (14), the idea is to iteratively solve the one-
dimensional integral equation (12) for E(K`,z) Nr times, one
for each quadrature abscissa K`, ` = 1,2, · · · ,Nr and then
compute the solution to the integral equation by numerical
quadrature of the Fourier Bessel- transform, i.e.

eφ (ρ,z) =
Nr

∑
`=1

J1(K`ρ)K`E(K`,z)w` . (24)

where w` is the quadrature weight coefficient associated
with abscissa K`.

Preliminary check of apparent conductivity

A relatively simple preliminary check on the formulation
is to compute the first iteration of equation (12). This
results in a form of the Born approximation for the total
electric field. For numerical comparisons we define
a two-coil induction array with coil spacings of L =
0.2032,0.3048,0.4064,0.6096,0.9144, and 1.2192,1.8288 [m].
For this computation, the total electric field is scaled in
traditional apparent conductivity (σa(z)) units.

The family of apparent conductivities shown in Fig. 1
are as expected with the higher vertical resolution shorter
arrays tracking more closely the actual input formation
conductivity σ f near the bed-boundary transitions.

Figure ?? is the large dynamic range one-dimensional 28
layer Oklahoma input formation conductivity profile σ(z)
[S/m] used in the simulations to follow. The background
conductivity is σb = 0.9545 [S/m]. Table ?? defines other

input parameters for the simulation. Figure ?? compares
the computation of equation (??) as compute by 256
point Gauss-Legendre quadrature with an FFT numerical
convolution with respect to z.

Conclusions

The application of the results of this as well as the
companion paper is to develop an efficient numerical
method to compute three-dimensional convolutions. For
axi-symmetric geometries, this is an important component
for efficient iterative solutions to integral equations. In
this paper Fourier-Bessel transforms of order one, that
use the discrete sine and cosine transforms developed
in the companion paper, are validated by comparing the
computations with analytic examples of Green’s functions
and an associated normalization function. Optimum
computation speed of the resulting three-dimensional
solver depends upon keeping all arrays in memory.
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