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ABSTRACT

This work aims to analyse how seismic data compres-
sion affect the acoustic impedance estimative. First
data is compressed with the SPIHT method considering
three values for reduction in the bit per pixel representa-
tion. Latter the compressed data is reconstructed and in-
verted by using the same parameters used in the original
data and an inversion method based in the Levenberg-
Marquardt algorithm. Results of compression and in-
version are analyzed from a qualitative point of view, by
analyzing the visual quality of the compressed data and
quantitative by measuring the percentage of energy from
the compressed data to the original data and the per-
centage of data compression, for results from the first,
and the root mean squared error and the peak signal-to-
noise ratio, for results from both.

INTRODUCTION

Exploration, evaluation and monitoring of hydrocarbon
reservoirs uses as its main source of information about
the subsurface, seismic data. However, with the increas-
ing need of hydrocarbons, a large amount of seismic data
was acquired. The storage of these data becomes a
problem when a single data acquisition can have a Ter-
abytes size. In this context, the seismic data compres-
sion becomes an important step, ensuring that more data
can be stored while using less space.

Several seismic data compression methods currently ex-
ists in the literature. Most of them make use of the
wavelet transform along with some threshold technique
of the wavelet transformed coefficients as in Luo and
Schuster (1992), Villasenor et al. (1996) and Zheludev
et al. (2004).

Compression methods can be classified as lossy, when
there is some loss of information, or losless, when all the
information can be restored. For lossy methods, it is de-
sired that errors be as minimal as possible, considering
a threshold.

A commonly used technique to contribute in seismic in-
terpretation is seismic inversion. Data inversion involves
a mathematical treatment of seismic sections, there-
fore the less uncertainty (less error, noise, etc.) in the
data, the better will the estimated subsurface model be.
Hence, for seismic data, uncertainty in compression is
directed related to uncertaninty in inversion.

In this work, seismic inversion works as a quantitative
analysis of data compression. The compressive method

used was the SPIHT (Said and Pearlman, 1996), consid-
ering data wavelet transformed.

For inversion of the seismic data Levenberg-Marquardt’s
method, described in Levenberg (1944) and Marquardt
(1963), and as proposed by Cooke and Schneider
(1983), was adopted.

A seismic volume from the Marimba oil field, with 101
inlines and 201 crosslines, and three wells from the area
were used for analysis.

METODOLOGY

The methodology followed in this work follows: First
transform the data to wavelet domain, second compress
the seismic data volume using SPIHT at different com-
pression rates, third invert the data and at last, analyse
how the inversion results are affected by compression.

Wavelet Tansform

The wavelet transform (WT) involves a multiresolution
analysis of a signal by expanding it in relation to a
wavelet function basis (one scale and one wavelet or
detail function), the same way Fourier transforming ex-
pands a signal in relation to an orthogonal basis of sinu-
soids (sines and cosines). However, unlike the Fourier
transform, wavelet transforming allows signal represen-
tation not only in the frequency domain, but also pro-
vides temporal information (or space depending on the
application field), hence enabling a local analysis of sig-
nal variations admitting various resolution levels (Burgos
et al., 2013).

Through the multiresolution analysis concept introduced
in Mallat (1989) and the nested condition of the wavelet
basis functions, the scale function can be represented as
a weighted sum of translated versions of itself scaled by
a factor 2, as shown in the equation below:

ν(t) =
∑

n

hlp

√
2ν(2t−n), n ∈ Z. (1)

Coefficients hlp above are related to the known analysis
low-pass filter and

√
2 normalizes the scale function by

a factor 2. In addition, the wavelet function can be rep-
resented by a weighted sum of translated version of the
scale function dilated by a factor 2.

υ(t) =
∑

n

hhp

√
2ν(2t−n), n ∈ Z. (2)

Coefficients hhp relate to the known analysis high-pass
filter.

When working with seismic data, images, digital sig-
nals in general, it is not necessary to work directly with
scale or wavelets functions. In this case what should
be considered is the analysis and reconstruction filters
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and the approximation and detail coefficients, which can
be regarded as digital filters and signals, respectively
(Vaidyanathan, 1993). In general, analysis (decomposi-
tion) and reconstruction (synthesis) of a signal can be
represented as two two-channel filter banks (Mertins,
1999), as shown in figure 1.

cj(k) =
∑
m

hlp(m−2k)c(j+1)(m) (3a)

dj(k) =
∑
m

hhp(m−2k)c(j+1)(m) (3b)

c(j+1)(k) =
∑
m

cj(m)glp(k−2m)+

+
∑
m

dj(m)ghp(k−2m)
(3c)

By looking at the equations above, it can be noticed that
in the analysis step, approximation and detail coefficients
at resolution scale j can be calculated through convo-
lution of coefficients at scale j + 1 with filters hlp(−n)
and hhp(−n) followed by decimation with a factor 2 (pre-
serving only the even terms). Thus the analysed signal
is decomposed into subbands such that high-pass lev-
els have higher frequencies and low-pass lower. As for
the synthesis step, approximation and detail coefficients
at the j + 1 resolution scale can be found through sig-
nal interpolation by a factor 2, with zeros added between
terms and subsequent convolution with filters glp(n) and
ghp(n). Filter bank implementation composed by this
structure can be done with the algorithm (piramidal al-
gorithm) developed in Mallat (1989) for the discrete WT.
Figure 1 depicts how this WT implementation with filter
banks work.

Figure 1: WT implementation with filter banks. (a) Analysis and synthesis step at
level 1. (b) Analysis step with filter banks at the third level.

Selection of the appropriate filter bank for data com-
pression is critical, once one having better ratio of loss-
and-gains between the compression ratio, the signal re-
construction error and the total energy preserved may
lead to better results. Following the results in Gomes
et al. (2014) the chosen filter bank were the biorthog-
onal of class Cohen-Daubechies-Feauveau (CDF), 9/7,
the same used in the JPEG image compression.

SPIHT Compression

In Said and Pearlman (1996) an extension of the Embed-
ded zerotree wavelet (EZW) codec of Shapiro (1993) is

presented as a faster and at the same time as having
equal or superior performance, the SPIHT (Set Partition-
ing in Hierarchical Trees).

From the wavelet transform theory introduced above, it
can be stated that low-pass levels (containing lower data
frequencies) concentrate most of signal energy. More-
over, spatial similarities exist between subbands as ex-
emplified in Salomon (2006): "An image part, such as
an edge, occupies the same spatial position in each
subband". These are the main properties exploited by
wavelet compression methods as SPIHT, treated here.

SPIHT uses progressive transmission of the data, in a
way that the most important data information is trans-
mitted first. Selection by importance considers a mean
squared-error distortion measure. Taking A and Â as
the original and compressed data WT, respectively, and
that the Euclidean norm is invariant to wavelet transfor-
mation the distortion measure is:

Dmse = ‖A− Â‖
number of elements

. (4)

Using the above equation SPIHT will transmit the greater
WT coefficients (considering an absolute value) first, en-
suring that the compressed data contains the maximum
signal energy, considering the bit threshold used, as pos-
sible and thereby the less distortion. This property will
permit to flexibly control the compression rate (Zheludev
et al., 2004).

Selection of larger WT coefficients needs sorting them in
decreasing order while storing its position (ordering in-
formation) what would mean more data. SPIHT does not
sort all coefficients, instead it selects the significant ones
by partitioning the data set in subsets, which are created
and partitioned using the called spatial orientation tree
data structure. The latter defines a spatial relationship
between subsets using the above mentioned similarity of
subbands.

Seismic data compression using SPIHT first appears in
Duval et al. (1999) followed by works as Zheludev et al.
(2004) and more recently Xie et al. (2014). Considering
the achieved results of SPIHT to seismic data reported
in the literature, though not as rich as other gephysical
research fields, good results have been reported.

Seismic Inversion

An inverse problem is one where information about a pa-
rameter is sought through an indirect measurement, a
set of mathematical methods and physical relationships
between the measurement method and the observed pa-
rameter.

A common classification of inverse problems is in well-
posed or ill-posed where the matching of three conditions
will tell in which of the two will a given problem be classi-
fied: (1) There exists a solution, (2) It is unique and (3) It
is stable. The last being directly related to signal-to-noise
ratio. If both conditions are satisfied, it is a well-posed
problem, otherwise an ill-posed one.

Most geophysical problems are ill-posed, however an
approximate solution may still be found through some
regularization technique and/or use of a priori informa-
tion. Here we treat the acoustic impedance inversion
case where regularization usually assumes some kind
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of sparsness to data as in Sparse-Spike methods, or
prior information about the model can be added by using
wells, from velocity analysis and by some constraining of
the estimated model.

The mathematical method adopted to perform data in-
version is Levenberg-Marquardt’s algorithm (Levenberg,
1944; Marquardt, 1963) while the physical model is a
linearization through Taylor series of the seismic data
convolutional model. This combination is entitled Gen-
eralized Linear Inversion (GLI) in Cooke and Schneider
(1983).

Considering a seismic pulse, W (source-signature) and
a reflectivity series R from earth subsurface, through the
convolutional model, the seismic signal, S will be gener-
ated by convolution of R and W .

The linearized model as a function of earth subsurface
impedance Z and an initial guess Ẑ is:

S(Z) = S(Ẑ) + ∂S(Ẑ)(Z− Ẑ)
∂Ẑ

. (5)

The solution is sought iteratively through:

Ẑk = Ẑk−1 +Jk, (6)

where Jk refers to error in model estimation and will be
calculated with Levenberg-Marquardt’s method as:

Jk = (DT
∂ D∂ +κI)−1DT

∂ [S(Z)−S(Ẑ)], (7)

with D = ∂S(Ẑ)
∂Ẑ

, I as the identity matrix and κ described
as a parameter associated to local linearity of the error
surface.

RESULTS

Figure 2: Seismic volume.

The seismic volume before mentioned,
is shown in figure 2.

Seismic data compression was applied
to the data set considering the follow-
ing reductions in bit per pixel repre-
sentation: 0.25, 0.5 and 0.6. Three
measures were used to analyze per-
formance and therefore reconstruction
quality: The Peak-Signal-to-Noise-Ratio
(PSNR), the Percentual remaining en-
ergy (PE) and the Root Mean-Squared
Error (RMS). Table 1 shows the com-
puted measures considering each re-
duction plus the Percentual of Compres-
sion (PC), measuring the rate between
compressed and real data.

Figures 3a, 3b and 3c shows the result
of compression using the three thresh-
olds for the inline 70. The trace shown
in the figure is in the same coordinates
as an used well.

A quantitative analyzis of compression from table 1
shows that small values for the RMS error were obtained
while most of the energy was preserved. Also, the con-
siderably high PSNR values means that noise related to

Table 1: Compression Results.

REDUCTION 068.25 0.5 0.6

PSNR
(dB) 58.5251 61.4256 62.1783

PE 97.9% 98.59% 98.5%

RMS 102.8242 73.6322 67.5207

PC 0.39% 0.78% 0.94%

uncertainty in reconstruction is not as high as to destroy
the original signal characteristics, in other words the re-
constructed and uncompressed data have a good simi-
larity in the sense that main features were preserved.

Analyzing the figures, similarity between uncompressed
and compressed signals is easily seen. By a visual anal-
ysis, arthifacts are hardly found, thus the residual image
in the leftmost part of figures shows a colored noise-like
behaviour with most values ranging below 150.This fea-
ture of the residual image appears in the reconstructed
image as an enhancement of correlated features (seis-
mic reflections). Considering the SPIHT algorithm filters
the higher frequency information it is expected that un-
correlated noise, to which this information is related, be
filtered out.

For all seismic data compression thresholds, the inver-
sion parameters were held the same as for the origi-
nal data to evaluate how acoustic impedance is influ-
enced by compression. Therefore, despite the follow-
ing results, a search of better parameters to invert the
compressed data will possibly lead to less uncertainty.
The initial model for inversion was generated using three
wells crossing the data as a means to guarantee better
and more stable results.

Table 2 shows the RMS error and PSNR measures
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Table 2: Inversion Results.

REDUCTION 0.25 0.5 0.6

PSNR
(dB) 22.0479 22.1229 22.1415

RMS 6.8541e+03 6.7952e+03 6.7807e+03

for the inversion results. RMS values are considerably
higher than the compression results, though when look-
ing at the value range of seismic and impedance data
it can be noted impedances’s values are higher. Nev-
ertheless RMS value for inversion represents approxi-
mately 20% of the higher impedance value while the
maximum residue value is near 39% of it, considering
the 0.6 threshold (expected to have less uncertainty).

Through observation of figures 4a, 4b and 4c the dis-
crepancy between estimated impedances is outstanding.
In trace 156 shown in the figures, for time values of ap-
proximately 2.78s the residue starts to grow. This growth
behaviour is related to the fact that well information only
exists until around this time value to constrain the inver-
sion. Furthermore, the residue image does not show,
as in the compression analysis case, a noise-like be-
haviour, except at the upper left and rigth parts, showing
coherency in the residue pattern and growing in ampli-
tude with depth, what is coherent with the observations
from trace 156.

In some way, the results of seismic inversion using com-
pressed data are extremely dependent on constrain-
ing since noise from uncertaninty in reconstruction is
present, leading to, possibly, unstable results.

CONCLUSIONS

Compressing seismic data using SPIHT achieves high
compression rates while at the same time guarantees a
good visual quality and a small RMS error, ensuring good
similarity of the reconstructed with the original data.

For SPIHT as most of wavelet compression methods, re-
dundant information related to noise is discarded such
that significative features of the signal are enhanced,
leading to increase in lateral continuity of seismic reflec-
tion, thus to augmentation in data quality.

However when aiming for inverson, even information con-
sidered as redundant will have its use. Results from
compressed seismic data inversion shows that estimated
impedances are highly dependent on constraining, here
done through use of wells. Nevertheless there was
a substantial difference between impendance estimates
from uncompressed and compressed data even in re-
gions where constraining was present.

For inversion results also, the main features were pre-
served when comparing with the estimate from original
data, possibly as a result of main feature’s preservation
in seismic data. This property means that geological
information about subsurface remains in the data even
though compression makes it difficult to access.

The compression residue was observed to behave
somewhat like colored noise. By considering the infor-
mation about this residue can be predicted, obtained

or estimated, and that it really is and always happens
as uncorrelated noise, transmiting information about it
would allow for noise addition in the inversion, much like
prewhitening or an appropriate regularization, and there-
fore would assure more reliable impedance estimates.
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Figure 3: Comparison between real and compressed data considering a reduction to
(a)0.25 (b)0.5 and (c)0.6 in the bit per pixel representation. Inline 70. Residue image
has its histogram showing how values are distributed.
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Figure 4: Comparison between estimated impedance from real and compressed data
considering a reduction to (a)0.25 (b)0.5 and (c)0.6 in the bit per pixel representation.
Inline 70. Residue image has its histogram showing how values are distributed.
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