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Abstract

We propose a new methodology based on quasi-
Monte Carlo method (QMC) to solve the nonlinear
inverse problem of determining the seismic velocity
field from traveltime data. Forward modeling is
performed with ray tracing. We compare QMC with the
standard implementation of the Monte Carlo method
(MC) considering synthetic two-dimensional data.
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Introduction

The Monte Carlo method is a classical global optimization
technique for highly non-linear inverse problems (Sen and
Stoffa, 2013; Tarantola, 2005). We randomly generate
a large number of realizations of the parameter models
and select the realization with lowest misfit. However,
this method is computationally very expensive since it
requires many realizations in order to have an accurate
solution.  Another critical issue is that the realizations
may not be perfectly equidistributed (not uniformly spread
throughout the search space), so that the generation-
acceptance/rejection associated with minimization of misfit
requires a huge amount of computational work.

In order to overcome the computational cost problem and
distribute more evenly the variables in the field, we propose
the quasi-Monte Carlo method (Niederreiter, 1992). In this
approach, the parameter realizations are constructed from
low-discrepancy sequences rather than randomly chosen.

We validate this method with a two-dimensional seismic
inversion problem. We seek the velocity field that
minimizes the misfit of computed and observed traveltimes
data in a source-receiver array over the surface. Forward
modeling of traveltimes is performed with ray tracing and
the velocity field is parameterized by two-dimensional,
cubic polynomials. Herein, we focus on low-discrepancy
sequences of Sobol type (Joe and Kou, 2008).

Quasi-Monte Carlo method

The QMC method is based on low discrepancy sequences.
Discrepancy intuitively represents a measure of deviation
from uniformity of a sequence of points on an unit cube 7 =
[0,1)k. As a consequence, realizations generated by this

kind of sequence (low-discrepancy) are more uniform than
random sequences making them well correlated. Formally,
the discrepancy of a sequence can be defined as follows:
let S = {x1,x2,...,xn} be the first N terms of the sequence,
and let J be an arbitrary subset of the unit cube 1. If T(J) is
the number of terms in S that fall into J, i.e., the number
of terms in SNJ, and V(J) is the volume of J, then the
discrepancy D(S) is given as

D(S) = sup
J

0y, 0

This means that the discrepancy is the largest difference
between volume of subsets of the unit cube by the fraction
of points in the subsets. The error of QMC for N realizations
of dimension M decays with order O(N~! (logN)™), while in
MC the error order is O(N~'/2) (Fig. 1), for details see
Niederreiter (1978).
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Figure 1: Order of error decay for QMC (M = 1/4,1,4) and
MC methods.

Fig. 2 illustrates the histograms in two-dimensional media
involving the Sobol sequence and the MC method for
2000 realizations. Note that the Sobol points are better
equidistributed in a given volume than pseudo-random
numbers (MC method).

Ray tracing

The theoretical basis of this section is given by Cerveny
(2001) and Santos and Figueiré (2011). We assume that
the vector position of a ray trajectory is determined by the
parametric equations

x = x(1) = (x(1),2(x)), @)
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Figure 2: Data point histogram 2D with 2000 realizations
from QMC (above) and MC (below) methods.

where 1 represents a ray parameter. This trajectory is
obtained by the following equations:

dx

- = P
dt

3
dp - _ 16( ! ) @)
dt 2 \V?(x,2)

Here p(7) is the slowness vector that is tangent to the ray
trajectory at T and V (x,z) is the velocity of the seismic wave
at each point (x,z) of field. In order to obtain a numerical
algorithm allowing the tracing of rays, we employ a first-
order Taylor expansion of system (3):

{X(T+Ar) = x(1)+p(1)AT

p(t+At) = p(r)+%§(m)m. ()

Moreover, travel time along the ray trajectory can be
obtained by expression

dT 1

which is calculated numerically by the following equation:

N N
1
T(xN+17ZN+l):ZATi:ZV”xiH*xi”Za (6)
=0 iz Vi

where V; represents the wave velocity at x; = (x;,z;). To
solve Egs. (4)-(6) for the travel time, initial conditions
should be established. We consider

1

p(0) = m(cos(@),sin(@)),

for 6 evenly distributed in [0, x]. Once this has been done,
at the end of each step in the process of ray trajectory
construction, the slowness vector p must be updated to
satisfy the eikonal equation:

pl3=pl+p3= (7)

1
V2(x,z)’
where p = (p1,p2) with pi = [|pll2cos(), p2 = [|pl|2sin(6)
and 6 is the angle between p(0) and the positive orientation
of the x-axis.

Inversion algorithm

In order to introduce the global optimization method based
on quasi-Monte Carlo realizations, we firstly consider a
model vector m written as

m = (my,my,ms,...,mp)", (8)

and a vector d°” = (dy,da,ds,...,dg)T, associated with the
following expression

e(m) _ dobx _ g(m) — dabs _ dcal'

Vectors d°*, d°“ are, respectively, the observed data
and the calculated data for the model m, and g is the
forward modeling operator. The global optimization method
developed in Sen and Stoffa (2013) is a procedure to get
the global minimum of the objective function defined by

¢(m) = e(m)"e(m) = (d” —g(m))” (d*” —g(m)). (9)

We present below a brief summary of the algorithm:

1. Choose a number of parameter realizations N and
generate a set S with N samples;

2. Search for a new mp € S using the current model;

3. Evaluate the objective function at this new model, and
update it;

4. Repeat 2, 3 until it reaches an optimal value for the
error or maximum number of realizations.

For further improvement of the parameters, the model
provided by the global optimization algorithm serves as the
initial guess of a Gauss-Newton local search.

Numerical Experiments

In this section, we consider a two-dimensional velocity field,
heterogeneous and isotropic, with horizontal length of 32.0
km and depth of 4.0 km, whose velocities are between
1.0 km/s and 6.0 km/s. The source-receiver array has
5 sources and 33 receivers, both equally distributed on
observation surface (z = 0).

Fig. 3 illustrates this target velocity field (in color scale) and
the seismic rays that arrived first at the receivers (x,) from
each source (x,). The travel times r°% (m, n) of the rays from
the k-th source that arrive first at the /-th receiver, which are
illustrated in Fig. 4, will form the vector of observed data
d°” for the study of inverse modeling. Note that the total
number of observations is the number of sources times the
number of receivers, i.e., K =5 x 33 = 165.

Regarding the QMC/MC inversion algorithm, each
component m; of the model vector m represents the velocity
at the i-th block of an 8 x 4 grid of the medium (thus the
number of parameters is L = 8 x4 =32). In order to perform
the ray tracing in the forward step, we need the velocity
field to be smooth. For this purpose, we find the cubic
polynomial

V(x,2) = Coo + Crox + Co12+ Coox* + Cy1x2

(10)
+ C0222 + C3()x3 + C21X2Z + C12xz2 + C()3Z37
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Figure 3: Ray tracing on the target model.

Figure 4: Records of the traveltimes of first arrivals for the
target model. The receivers and arrival times are indicated
by the x- and y-axis, respectively. Each plane in the z-axis
represents a single source.

that best fits the block model in the least-squares sense.
This step provides the travel times 1% (m,n) of the rays from
the m-th source that arrive first at the n-th receiver, which
are the components of the observed data vector d*?*.

Figs. 5(a)-5(b) show the inversion results obtained from
MC and QMC after 5000 realizations. Observe that there is
a discrepancy in the model of velocity field on MC, making
difficult their geological interpretation. However, such a
discrepancy is milder in the model generated by QMC,
so that the geological characterization of the velocity field
becomes more easily understood. Besides, the seismic
rays in the QMC model reach deeper region of the model
than in the MC method. Nevertheless, we note bad
estimation of the velocity for deeper regions in the QMC
method, that can be explained by weak coverage of the
rays of such regions in the foward modeling.

Fig. 6 shows the misfit decay of MC and QMC methods.
Here, the misfit is defined by root mean square (RMS):

Z|10bs(m,n) _ [cal(m7n)‘2

m,n
RMS = :
thohx (m’n)‘2
m,n

x 100%. (11)
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Figure 5: Ray tracing on inverted model, obtained by
(a) MC and (b) QMC methods considering N = 5000
realizations.

The convergence patterns of QMC and MC were very
similar, but we point out the rapid misfit decrease of QMC
in the first 100 iterations.

Figs. 7(a)-7(b) show the arrival times obtained from the
inverted models. The best results were obtained at the first
half of the receiver array. Note that the lateral variation of
the target model (and also the inverted models) is lower
below these receivers.

Conclusions

In this paper, we use ray tracing in inverse problems
associated with parameterization of the velocity field
admitting synthetic data sets. We have applied the global
optimization method in light of the quasi-Monte Carlo
methods to solve this problem, using Sobol sequences to
perform the inversion of traveltimes in synthetic data sets
and compare their results with MC.

Although we did not obtain inverted models identical to
their target models, the methodology employed on QMC
demonstrated excellent ability to highlight the main features
of the velocity field, representing the geophysical model
well, although that are artifacts that may be linked to the
generation of rays that are not sufficiently deep.

It is also important to note that CPU time required to
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Figure 6: Misfit between synthetic and computed data for
MC and QMC methods.

perform of the computational process in both methods had
a similar performance so we have not done a detailed
study on this subject. Regarding misfit, the quasi-Monte
Carlo method presented a fast decay in the first 100
iterations and eventually delivers a lower misfit Monte Carlo
between 100 and 1000 realizations. From this point on, the
convergence becomes extremely slow as envisaged in the
literature (see Azevedo and Oliveira (2012); Graham et al.
(2011)).

For future work, we intend to build quasi-random
sequences from weighted averages of low-discrepancy
sequences and pseudo-random numbers, with a weighting
factor 0 < ¢ < 1. In particular, g = 0 leads to a completely
free MC method, whereas ¢ = 1 yields a QMC method.
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Figure 7: Travel times from source to receiver obtained by
QMC and MC methods considering N = 5000 realizations.
The receivers and arrival times are indicated by the x- and
y-axis, respectively. Each plane in the z-axis represents a
single source.
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