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Abstract

The classic poroelastic theory of Biot, developed in
1950's, describes the propagation of elastic waves
through a porous media containing a fluid. This
theory has been extensively used in various fields
dealing with porous media: seismic exploration,
oil/gas reservoir characterization, environmental
geophysics, earthquake seismology, etc. In this work
we use the Ursin formalism to derive explicit
formulas for the analysis of propagation of elastic
waves through a stratified 3D porous media, where
the parameters of the media are characterized by
piece-wise constant functions of only one spatial
variable, depth. There is considered the Ilow-
frequency limit of the Biot equations.

Introduction

Poroelastic models are used in geophysics and petroleum
engineering, where porous media filled with fluid and/or
gas is of great interest. The best-known poroelastic theory
was developed by Maurice Biot, see Biot (1956a) and Biot
(1956b).

There are many works devoted to the development and
application of analytical/semi-analytical methods for wave
propagation analysis in stratified elastic media, see, for
instance, Thomson (1950), Haskell (1953), Brekhovskih
(1960), Kunetz and d’Erceville (1962), Ursin (1983), and
Molotkov (1984).

The development of similar methods in the case of
stratified porous media is very important too, see Allard et
al. (1989), Baird et al. (1999), Molotkov (2002), and
Carcione (2007).

The Ursin formalism gives a unified treatment of
electromagnetic waves, acoustic waves, and the isotropic
elastic waves in plane layered media. Recently, this
formalism was applied to the Pride equations for
simulation of the electrokinetic phenomena in layered
media, see White and Zhou (2006).

In this work we apply Ursin’s method for solving the Biot
system in the case of the 3D poroelastic plane layered
media. In the exposition of results, we follow basically to
the White and Zhou work. Although the results obtained
by White and Zhou allow, under certain conditions, to split
Pride’s equations and select only the poroelastic part, we
examine the case of a more complete poroelastic system,
characterized by presence in the Darcy law of an inertial
force connected with the effective density of pore fluid.

Method

1. Problem. We shall consider wave propagation in a
k=N

porous half-space R= UR,(, composed with stratified

k=1

N B _ 3.
layers Rk—{x—(xl,xz,x3_z)eR .Zk<z<zk+l}, where

Ozzo<z]<~~-<z =oco, Let

Mol u=(u,u,,u,) and

w=(w,w,,w,) be the solid and relative fluid
displacements, respectively. The Biot equations (low-
frequency case) in the time frequency (@) domain, at

each point xeR, are (time dependence of ¢ is
assumed)

—io(pv+ p(/q) =V.t+f

q:%(—Vp+iwp_fv+iwaq+g) )
—iwt =(AV-v+CV- )+ G(Vv+ W)
iwp=CV-v+MV-q

Here: v=—iwu,q =—iww are the solid and relative fluid

velocities, f=(f,f,,f,) and g=(g,.g,.g,) the forces

imposed on the solid and on the pore fluid, respectively;
T, the stress tensor; p, the pressure in the pore fluid;

A,G , the Lamé coefficients; C, M , the Biot moduli; p,
the bulk density; P the density of the pore fluid; p,, the
effective density of the pore fluid; K, the permeability; 1,

the pore fluid viscosity; 7, is the 3x3 identity matrix. All
the material parameters are represented by piece-wise
constant functions, depended only on the depth
coordinate z, with the discontinuities at the points

z=z,k=12,.,N.

At layer boundaries we suppose that the following
functions are continuous:

Visqy, Dy Tissi = 1,2,3 )
The boundary conditions at the free surface z=0 are

p=17,=0i=123 3)

And finally, at the infinity the solution satisfies the
following radiation conditions:

‘1_‘ingq(v,q) =0 (4)

2. Ursin format. Consider the Fourier transform in the two
coordinates x,,x,
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)A((kl,kz,z) =F_ (X)= ” e_"(klxﬁkzxz))((xl,)c2,z)cl)c1 dx,
RZ

Let (k,k,)"

k=\kl+k,,y=ko™. Applying the Fourier transform to
(1) we obtain the EDO’s system represented in the terms

AAAAA

be the horizontal wavenumber and

Let
k k0
Q=k" -k, k 0
0 0 %

The EDO'’s obtained can be simplified if we define
F=Qx,i=Q0,§=04,T=Q1Q", f=0f,§=0Q8,p=p

A straightforward calculation uncouples this system

where @ are the 2n_ - vectors (n,=3,n,=1),
defined as
(D(l) = (‘73,%13’_63’%33"7],ﬁ)T,q)(Z) = (‘72’%23)T

S are the source 2n,_-vectors, and M are the

2n X 2n -matrices
m m

0
(m)
M,

M(m)
1
0

M =

with symmetric n_ xn_-matrices M"™, M" .

For Systems 1 and 2 the submatrices and the
corresponding source vectors are

(m)
d‘? =—ioM" D" + 5™ m=1,2 (5)
Z
-pM By(C* = 2AM) -pC
iop’x iop,
System1: M"=| By(C*-AM) p+ .P‘, —4By’G(C* = M(A+G)) 2[3}/GC—&
n—iwp K n—iop K
iwp , 0 e
~BC 28yGe— L ~B(A+2G)+ XK
n—iwp K n—iwp K
Py -p, .
_ . dop K ke .
M = G 0 SV =0~ f-—L—8,———8.-/,,0.8) (7)
) n—imp x° N-iwp, K
-n+iwp K
-, 0 —
110):
iwp’K . iwp K
System?2 : Mfz) = G’l,Méz) =p- G}/2 +¢,S(Z) =(0,~f, —¢§2)T
n—iwp K n-iwp K
where B=(C* - M(A+2G))".Once ®" and ®* have been determined, we may compute
G, =————(=ikp+iwp 7 + &).7, = B{~4yG(C* = M(A+G)), +(C* = AM)E,, +2GCp |
— 1P K '
! g iop K ®
7, = B{-2rG(C* = AM)¥, +(C* = AM)T, +2GCp}.G, = —L—7, + — —— &%, =—G7,

n-iop ikt n-iopK

3. Diagonalization. Let's give briefly a derivation of the
diagonalization procedure. We consider matrices of the

form (6), where for simplicity we drop the superscript ™.

Assume that M M, has n distinct nonzero eigenvalues

lz.,j=1,2,...,n, with associated eigenvectors

J a.f !
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j=12,...,n, such that a M,a =2 . Here/ll:,Mf.

with the branch chosen so that Im(/l/.) >0 and },/. >0 is

real if )L/. is real. Define b, :/l;lea/.. This vector is an
eigenvector of M M, with eigenvalue )L/z.. Using
symmetricity of M,, M, we obtain afbl. =3, where 5;
is the Kronecker delta.
Let Ll be the nXxn matrix whose j-th column is a,
and let L2 be the nXn matrix whose i -th column is b,.,
then L/'=L], L)'= L . Introduce
A =diag(4,,A,,...,4))

Then LLA=M,L and M L,= LA, which implies

M =LAL ,M,=LAL 9)
Introducing the diagonal matrix A =diag(A,—A) and
using (9), we finally obtain

M =LAL' (10)

where

oL L L oL L L
VL - | 2| & -r
The explicit formulas for /l/.,a/.,bl, for Systems 1 and 2
are given in Appendix.

4. Reflection and transmission matrices. Firstly, we
consider a homogeneous, source-free region of space.

Dropping “” we have a 2n -dimensional system of the
form (5) with M constantand S =0. Let

®=L¥ and ¥ =(U,D)" (11)
where U,D are n-vectors, characterizing upgoing (U )
and downgoing ( D ) waves. Then

¥(z)= (e*"“’A("*%)U(zO),e"“’A‘Z*ZO)D(zO))T (12)

where z, is a fixed point in the same source-free region.

Next consider an interface at z, where the material
parameters vary discontinuously across z . We denote by

quantities evaluated at z*=zZ0. Since ® is
continuous across z , we obtain

W= JHYE (13)

where the jump matrix is

J, J A
J — (L+)—1L— = A B ,J_] — AT TB
JB JA _JB JA

and J,J, are the nxn-matrices

J, :%[(L;)T I +(Lj)r L;},JB :%[(L;)T L —(LT)T L;}
Next, we consider a stack of layers 0 < z,<...<z, <eo.

T T
We have (U;V,D;v) =J, (O,D;) , where we have used
that there is no upgoing wave below the last interface at
z=z,. So, we obtain

U,=T,D,,D,=T,D, (14)

NTN?
where

-1 -1

FN = _(J;N)(Jj,/v) ’TN =(‘]Z,N) (15)
Here FN is the reflection matrix and TN is the
transmission matrix from the last interface z=z,,

respectively. Let J<N and Az/, =Z,,=Z;,

j=L2,...,N—1, is the layer thickness. Then by jumping
across the layer boundary and using (12), (13) we obtain

i\ Az

-_gr irr- T
U/. —JA‘/.e U/.+1 JB‘/.e

—imA Az

I~inT
D_/'H

—i0A Az

j /D_
J+l

ion (16)

ST _ r
Dj = JB’je ’Uj+1+JA’je

Define reflection and transmission matrices 1"/.,T/. by

U =T,DL.U;=T,D; (a7
From (16), (17) we obtain by induction

r,=(7 0= Jn =/ E o+, )

1
A,j j+l B.j B J )

ioA Az, (_

(18)

T r\!
Ty E )

B.j~ j+l

T =T,e
Jt

J

iwA/Az/l_, oA Az

where F‘M:e , and FM is symmetric.

Jj+l
Thus, all the reflection and transmission matrices can be
calculated by (18), starting with (15).

5. Sources and boundary conditions. Consider a 2n-

dimensional system of the form (5) with “” omitted. Let
the source be of the form

S§=8,0(z—z)+806'(z—z,) (19)

with §;,S, independent of z .

Define n-vectors SA,SB:(S S )T=inS]—S0. Using

A’™B
this formula we obtain the following jump condition across
the source

D)= D) +(S,.S,) (20)
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Inserting a fictitious layer boundary at z = z: we compute
the reflection matrix I' = F(z;) . Since the material

properties do not change at z_, we have
¥(z)=(r,0,D,) (1)

where D =D(z]),U =U(z]). Using (11), (20) and (21)
we obtain

W )=(T.D.D) +—=(I5,+ 'S, IS _ps,)

\/E( 198> 4

This expression may now be propagated upwards
through layers, using (12) and jumped upwards across
layers boundaries until we reach the free surface at

z=0". Then n boundary conditions at z=0 can be
used to find the n unknowns D ..

Consider one particular case when z €(0,z). In this
case

w0 = (eiwAz‘rst,e—iwAz‘DS)T N

+L(ef‘“”v (LQSA + 17 SB),e_i”AZ‘ (LgsA .y SB))T

N

(22)
Define
4 T
(0 =(G,®,.G,®,) (23)
For System 1, let
- - T
q)f)l)z V3’— 3’ ):()
1 00 0 0 0
G;” 0 0 0 ,G(”— 0 0 1
01 0 0 0 0

We can check that (23) holds for System 1 with the

boundary conditions 7,,=17,,=p=0 at the free surface
z=0.
For System 2, let
@ _ (2) _ (2) _
O =7,00"), G =1G," =0

Then it may be checked that (23) holds for System 2 with
the boundary condition f23 =0 at the free surface z=0.

Now using (11), (22) and (23) we obtain

o = (ei(:)szl—-SeiwAZS (LZGA — LITGB)_ (LZGA + LlTGB))’l X

0

e (rs (is,-Ls,)-(Lis,+ 1 SB))

1
D =—

NG

; (L§SA - L1TSB)

=

WAz
¢ (LG~ 1[G, )@, -
(24)

In particular, when z =0" we get

®,=((T,~DLG,~(T,+ DLG,) x

(25)
x((T, = DLS,—(T, + DLS,)

(DO defines all of @ at the free surface, and

DU =T D, give all of @ just below the source. Now
we are able theoretically to compute ®in anyzeR_ by
propagating trough the layers using (12) and (13).

Remark. Propagation of an upward-going wave in the
downward direction will be unstable numerically using
(12), because the complex exponentials grow rather than
decay with distance. Then numerically, one has to obtain

U from D using 1"/. , or the transmission matrixT/..

Inverting the rotation transform, we can calculate the hat
() variables, i.e.,

v=Q'7,§=Q'q,t=Q" 1, p=p (26)

The matrices for Systems 1 and 2 depend only on the
magnitude k. However, the transformation (26) depends

on k,,k, . For any function é(k) let

=, ()= ()= ool )

We can compute these quantities as Hankel transforms in
the cylindrical coordinates r,0,z . Define

A 1 % . ~
B, (&)= Ejk’ufz (hr)E(k)dk

where J is the Bessel function and j,j, are
nonnegative integers. Then

[1]

B

- =
0,0 1,0°=1,0

= zcoseBzJ,:o’l = zsmeBLl

[1]

. 2
n= sm@cos@[Bl0 - ; Bz,1)

cos20 (27

P
cos20

-
see White and Zhou (2006) for details. These formulas
are used to get the solution in real space.

= = 2 _
E,, =cos 933’0 B

2,1

B

2.1

= —qin?
E,, =sin 033’0 +
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Examples

1. Dynamite source. A dynamite source imposed on the
solid and the fluid can be defined in the following form

J(x)=g(x)=-h@)Vé(x-x)

where ¢ is the Dirac function, x =(0,0,z,) is the source

position and /A(®w) is the spectrum of the seismic

moment. Applying the Fourier transform F_ we obtain

J=8=-ho)(iks(z-z),ik8(z—z2),6'(z-2,))
and rotation by Q vyields
J=g=-ho)(ikd(z-2),0,8'(z-z))  (28)

Substitution of (28) into S of (7) yields the source for
System 1, in the form of (19), with

T
wp kx 2
Sé"=h(w)[0,ik— pfx Kk ,0,0,0j
n-iwp K N—iwp, K

S = h()(0,0,0,1,0,-1)
(29)

Substitution of (28) into (7) shows that S is zero, then
ﬁz,’EB associated with System 2 are zero too. This is to
be expected result because System 2 is related to SH-
waves, which are not excited by the dynamite source.

Substitution of (29) into (S,.S, ) = iwMS, - S, gives

A>7B

SO = iBh(w)(o(C— M),2kG(M — C),0(2+2G~C))'

S =(0,0,0)"
(30)
Formulas (30) may be used in (24) or (25) for a shallow

source, to obtain all the tilde (~) functions. To invert
rotation €2, using (26), note that from (8) and the

vanishing of System 2, v,,¢,,7,,,7,, are identically zero.

All the remaining tilde (~) functions depend of £ only and
can be calculated by the following formulas

ko ko
V1=; Vs ?vl’ 3=V
ko kL,
q1=;q1’q2=;q2’q3=q3
2~ 2 ~ ~
2 :kl T, +hT, £ :klkz(fn_Tzz) (31)
11 k2 2712 k2
2~ 2~ ~
2 = k2711+k1 Ty .= k1713
22 k2 13 k
. kT, . L .
Tn= 2k13’r33=1339p=p

Then the Fourier transform F” can be inverted in

cylindrical coordinates (7,0,z) using (27) to obtain the
solid and fluid velocities

v=(iB,,(7))e, +(B,,(7))e.

(32)
q=(iB,(3))e, +(B,,(@))e.

where e ,e are unit vectors in the r,z coordinate

directions, respectively, and the stress tensor
components and the pressure

—_ 2= - 2= _ 2/ ~
T, = ‘:‘z,o(k Tu) + ‘:‘o,z(k 25 )5712 = ‘:‘1,1(k (Tu —Ty ))
- 2z - 2= —- -1z
Ty = ‘:o,z(k Tn)+ :z,o(k Tzz)’Tls = :1,o(k 713)
== -1z == (F == (P
723 - “0,1(k 113)’133 =00 (133),[7 - “o,o(p)

(33)

2. Vertical source. We next consider a vertical point
source acting on the free surface z=0, i.e.,

F(x)= g(x) = (0,0,1) h(@)8(x,)8(x,)8(z—z,)

where z — 0" puts the force on the free surface. This

models hammer, weight drop, and vibroseis sources.
Applying the Fourier transform F__ and rotation 2 we

arrive at

[=8=F=8=00)hw)d(z-z)  (34)
Substitution of (34) into (7) yields the source for Systems
1 and 2 in the form

$"'=(0,0,0,-1,0,1)" h(®)6(z —z,), S = (0,0)"

Thus, all the variables in System 2 are zero, as it was in
the case of dynamite source. From (19) and definition of

S .8, we obtain

$0=(0,0,0)", 8¢ =(1,0,~1)" h(w)

Now all the tilde variables at the free surface may be

computed using (25) as z — 0" and propagated
anywhere else in space. Note that S{,S\ are
independent of k,k,, so the tilde variables depend only
on k and not on wave number direction. Therefore,
similar to dynamite we can transform to the hat variables

using (31) and transform back to the spatial variables
using (32) and (33).

Conclusion

Based on the Ursin method, we have derived explicit
formulas of the solution to a boundary-value problem
formulated for Biot's system, which can be used as the
basis of a numerical algorithm and study of the
propagation of elastic waves in porous plane-layered
media.
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System 1. There are three modes: fast compressional wave (;tl(l) ), Biot slow wave (;tz(l) ), and vertical shear wave (;tgl)).

Eigenvalues:

. . 2 .
A0y =y + 8| cp ML 34261 PHK N B 0426y TP ) _af wp i TP (co-(a+26)p,).j=12
g 2 20K 2 wK / wK 4

. 2
(with (+) form=1 and (-) for m=2),and (A"} =~y + G [ p+ ’“’Kp’]

n—iwp K
Eigenvectors :
T
_ r a ioKyp
aV=a(-1,2Gy.¢,) .j=12.a" == v,GA) -Gy} .-————
W=7 (-1267.¢,) .j=12.4 | PO =G

.
a. . N—iwp K . _ T

bj-”=72)[26y2—p—p,»C,,y,p,ﬂC,inf ) .j=1.2,00" =a,(2Gy,1,0)
J

where

Cp—(A+2G)p, B 20 Loz 20
. ,a, = : . J=12,a= e
) n—iop,x ’ o N—i0p K Gy +G(4")
=Cp, +i(A+2G)" TF~ p+2p L +ib

é’/: (l;l))z_'_,yZ

B

System 2. There is the horizontal shear wave mode only.

(2)32 2 -1 inpj 2) 1 (2) (2)
APY ==y +G7| pt—T—|.a? = | b =VGA
n—iwp K GA
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