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Abstract 

The present study introduces the first steps of a Support 
Vector Machine (SVM) algorithm using two discrimination 
features: spectral ratio and waveform complexity on a 
dataset characterized by lower magnitude events 
recorded by a local network in Minas Gerais State, Brazil. 
The selected data set consists of 43 microearthquakes 
and 39 mining blasts of similar magnitudes and locations. 
The analysis was carried out using data of vertical short 
period components of two 3C seismic stations. Our 
results revealed that despite of some overlapping, these 
techniques show a good capacity to discriminate artificial 
by natural events for the studied region. However, for 
short distances (~3 km), the technique deserves more 
attention. 

Introduction 
The study area is located close to the Funil Reservoir 
power plant, in the the Minas Gerais State, south of the 
São Francisco Craton, where there are low-magnitude 
seismic events triggered as well as artificial events 
generated by several active quarries in the region (Fig. 1) 
(Barros et al., 2014). 

 
Figure 1: Red circles are natural events and yellow circles 
are artificial events. CC1, CC2, AV and SN represent the 
location of quarries close to the Funil Reservoir. The local 
seismic network is composed by seven 3C stations 
represented by the black triangles. 
 
The classification of the seismic events is challenging 
when natural and anthropogenic seismicity overlap in 

magnitude, space and time. The need of an automatic 
event classifier for monitoring local and regional 
seismicity increases since the visual screening phase is 
very difficult and time-consuming for analysts. 
 
SVMs (Support Vector Machines) are a useful technique 
for data classification. A classification task usually 
involves separating data into training and testing sets. 
Each instance in the training set contains one “target 
value“ (i.e. the class labels) and several “attributes“ (i.e. 
the features). The goal of SVM is to produce a model 
(based on the training data) which predicts the target 
values of the test data given only the test data attributes 
(Hsu, C.-W. et al., 2010). 
Training vectors xi are  mapped into a higher 
dimensional space by the function φ. The goal is to find a 
linear separating hyperplane with the maximal margin in 
this higher dimensional space. C > 0 is the penalty 
parameter of the error term, also known as cost factor. 
Furthermore, K(xi,xj) ≡ φ(xi)Tφ(xj) is called the kernel 
function (Cortes and Vapnik, 1995). In this study, the 
relation between attributes for two independent data sets 
led us to use two different kernels: 
 
• Linear: K(xi,xj) = xT

i xj.   
 
• Radial basis function (RBF): K (xi,xj)= exp (−||xi−xj||2),    
γ>0.  
 
Here, γ is a kernel parameter. Together with C, they are 
the two main parameters of a kernel function. Because it 
is not known beforehand which C and γ are best for a 
given problem, a parameter search must be done (“Grid-
search“). The goal is to identify good (C,γ) so that the 
classifier can accurately predict unknown data (i.e. testing 
data). This can be done through cross-validation method 
and, after the best (C, γ) is found, the whole training set is 
trained again to generate the final classifier. 

Spectral features of typical earthquakes and 
explosions 

In seismic analysis, the time-frequency distribution plots, 
spectrograms, represent a useful tool for discrimination 
between natural and artificial seismicity. They reveal time 
and frequency dependent variations in the signal energy 
distribution and also display relative amplitudes of seismic 
phases.   

Earthquakes are volume sources extended both in time 
and space and they generate a larger fraction of energy in 
S waves than in P waves. Their seismic waves have wide 
frequency content and their energy is evenly distributed 
over the whole recorded frequency band. Earthquakes 
also produce rather complex waveforms because of 
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secondary depth-sensitive seismic phases in their P and 
S coda (Kortstrom et al., 2015).   

In contrast to earthquakes, explosions are compressive 
point sources from which P wave energy radiates evenly 
to all azimuth directions. They have smaller energy 
content as well as lower dominant frequencies than the 
corresponding P waves. In comparison to an earthquake 
of similar magnitude, the explosions have narrower 
frequency content as well as shorter duration of P and S 
wave coda (Fig. 2). 

 
 

 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 2: Examples of spectrograms and traces computed 
for single explosion (at the top) and earthquake (at the 
bottom). The explosion spectrogram displays bigger P to 
S ratios, shorter duration of P and S wave coda and more 
concentrated distribution of signal energy content (around 
the frequency of 40 Hz) than a shallow earthquake of 
similar size in Fig. 2b, which displays bigger S to P ratio 
and the energy is evenly distributed over the whole 
recorded frequency band. 

Event discrimination 

Before choosing the features for the classification 
problem and due to the presence of multiple sources of 
blasts in the region, cross-correlation function was used in 
the software SEISAN (Havskov and Ottemöller, 2008) to 
provide a measure of similarity between different seismic 
events recorded in each station and, subsequently, to 
improve our understanding of the nature of each event.  

In our study, a high correlation coefficient (>0.6) means a 
high waveform similarity, which is caused by proximity in 
hypocenter location and similarity in focal mechanism 
between two events. Once the cross-correlation was done 
between the seismic signals, we could identify groups of 
events that originated from different blasts sites, as well 
as the group of natural events (earthquakes) originated 
from the fault line (Fig. 3). 

 

 
Figure 3: Correlation between events in software 
SEISAN. The first two traces show the signals being 
correlated, the third gives the normalized correlation and 
amplitude is less than 1. At the top, the signals of two 
explosions are being correlated (maximum correlation 
coefficient = 0.8). At the bottom, the signals of an 
explosion and an earthquake show a maximum 
correlation coefficient of 0.4.  
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In addition to cross-correlation, all available sources of 
information in event discrimination were used: i) clear first 
motion polarities of P waves; ii) reports emitted by the 
mines with the date and time of the scheduled explosions 
(not so precise and regular) and iii) time of event 
occurrences (daytime or nighttime). Normally explosions 
are compressive (first movement of the P-wave are up) 
and occur during working hours, whereas earthquakes 
can happen anytime.  

For stations very close to the events, the discrimination of 
the signals can still be very difficult and confusing, 
especially when P- and S- phases cannot be separated. 
Figure 4 shows the similarity between the signals of an 
artificial and a natural event. The seismic station that 
recorded these signals (FUN1) was located approximately 
10 km of the events. 

 

 

 
Figure 4: Similarity between events. Seismogram of an 
earthquake (mc=1.9) at the top and of an explosion 
(mc=2.1) at the bottom. 

 

Data and methods applied in SVM classification 

For this study, we have not set a lower limit to the number 
of stations that recorded an event because this would 
have excluded a large portion of the training data set. The 
selected stations, FUN1 and FUN3, were chosen due to 
the signal quality of their seismograms. In total, we 
selected the vertical components of 25 earthquakes and 
25 mining blasts that were located by FUN1, and 25 
earthquakes and 25 mining blasts located by FUN3. 
Therefore, two independent data sets consisting of 50 
events were used for each station. Together, they 
compose a total of 82 events (43 earthquakes and 39 
mining blasts – some events were recorded by both 
stations, others just by one of them) with similar locations 
and magnitude mc ranging from 0.3 to 2.6.  

The SVM models are station-specific and depend on the 
relation between the attributes (features) calculated for 
FUN1 and FUN3 stations. The first feature used was 
waveform complexity (C), which can be calculated by 

comparing the energy carried in different window lengths 
of the seismogram. It is, by definition, the ratio of the 
seismogram’s integrated powers S2(t) in the selected 
time windows (t2 – t1 and t1 – t0): 

 
The time limits of the integrals (t0, t1 and t2) of C were 
determined by a trial-and-error approach to find the best 
representative C values for both blasts and earthquakes 
of similar magnitudes. For both stations, FUN1 and 
FUN3, the duration of the signal is very short, so the 
selected time window was t0=0 s, t1=1 s and t2=2 s, 
where t0 is the P-wave onset time. 

The second feature (SR) is the ratio of the seismogram’s 
integrated spectral amplitudes a(f) in the selected 
frequency bands (high-frequency band, h1-h2, and low-
frequency band, l1 – l2). SR can be written as below: 

 
The integrals limits (h1, h2, l1 and l2) used in the 
calculation of SR were determined comparing the spectra 
of quarry blasts with those of earthquakes. We tested for 
different frequency ranges to find the spectral frequency 
band where the spectral ratio has a maximum efficiency.  

These parameters are commonly used in the 
classification of regional and teleseismic events e.g. 
Horasan et al. (2009) and Yilmaz et al. (2013). In this 
study, we intent to use the same classification method 
applied in a local seismograph network. 

LIBSVM (Chih-Chung Chang and Chih-Jen Lin, 2010) 
software package was used in MATLAB to obtain the 
classifying models. The procedure used in our work 
followed exactly what is recommended in the LIBSVM 
practical guide: 

 
From the total dataset of 50 events for each station, 35 
were selected for training the classifier and the 15 left 
were used to test its performance. In order to avoid 
attributes in greater numeric ranges dominating those in 
smaller numeric ranges, all attributes were linearly scaled 
to the range [0, 1]. 
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Results and Discussion  

Plotting the results obtained for the calculation of C and 
SR for FUN1 and FUN3 stations, we obtained the 
following graphs (Fig. 5): 

 

 
Figure 5: At the top, C x SR obtained for FUN1. At the 
bottom, for FUN3. 

As it can be seen in figure 5 (left), it is possible to visually 
distinguish the relation between features in FUN1. 
However, data points from different classes remain mixed 
between each other. In general, the waveform complexity 
of earthquakes was higher than of explosions, which is 
expected according to similar studies. In this case, the 
distance from the events to FUN1 was about 10 km. This 
is a reasonable distance to visually discriminate P- and S- 
phases in the seismogram (recall Fig. 4), and the 
waveform complexity calculation works here.  

For FUN3, on the other hand, we can’t see a clear 
relation between explosions and earthquakes in the plot. 
Because the distance from FUN3 to the event was so 
short (about 3 km), P- and S-phases overlap. In fact, the 
spectrogram of a shallow earthquake recorded by FUN3 
displayed explosion-like characteristics, i.e. large P to S 
rations. For this reason, some events might have been 
misidentified during the discrimination analysis.  

Even though there might not be a relation between 
attributes for FUN3, we wanted to explore what could be 

done with the results. Therefore, a linear SVM was used 
for FUN1 and a SVM with a RBF kernel for FUN3. 
According to Chang, C.-C, and Lin, C.-J, 2010, in general, 
the RBF kernel is a reasonable first choice. This kernel 
nonlinearly maps samples into a higher dimensional 
space so it, unlike the linear kernel, can handle the case 
when the relation between class labels and attributes is 
nonlinear.  

The grid-search done in FUN3 showed that the best pair 
(C, γ) was C=512, γ=2 with a cross-validation accuracy of 
71.73%. For FUN3, various input cost factor values were 
tried and the one with the less misclassification rate was 
picked. The optimized value found was 100, with cross-
validation accuracy of 66.67%. Figure 6 shows the plots 
with the hyperplanes for both cases. 

 

 
Figure 6: At the top, linear SVM for FUN1. At the bottom, 
RBF kernel SVM for FUN3. 

SVM classification performance 

From the total dataset of 50 events for each station, 
randomly sampling 35 for the training set and 15 for 
testing test, we reiterated this experiment 100 times. This 
is a procedure suggested by Kirsopp and Shepperd, 
2002, when inferences need to be made based on a small 
number of dataset. The statistics of the 100 experiments 
is listed in the table below: 
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Table 1: SVM classifying recognition rates 

 
The results varied significantly from one training set to 
another. This gives an indication that the number of 
sampled data sets might not be enough to gain a 
particular level of certainty. Therefore, increasing the data 
set is necessary to get confident inferences from the 
validation. Moreover, misidentified events in the training 
data (specially in FUN3) may affect the performance of 
the SVM classification. 

Conclusions 

The study achieved satisfactory results based on the 
small data set used to train the SVM classifier, and gave 
us an insight of how this discrimination technique works in 
the studied region. However, further study need to be 
done on the calculation of features. In general, the SVM 
classifier showed a reasonable capacity to discriminate 
artificial by natural events, but it depends on the recording 
station location. For short distances (≈3 km), the 
technique deserves more attention. 

Future Work 

• Analyze stations with a lower limit distance from the 
events; 

• Increase dataset. Making inferences with small 
number of training sets can lead to random results; 

• More discrimination parameters i.e. S-to-P amplitude 
ratios. 
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