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Abstract

We present a new 3-D gravity-inversion to estimate
the total-mass, the horizontal and vertical positions,
in Cartesian coordinates, of an ensemble of point
masses. To stabilize the solutions, we invoke
the Graph theory and then solve the Minimum
spanning tree (MST) problem. With this, we create
a severe spatial restriction to the 3-D distribution
of point masses in subsurface. The idea behind
this methodology is aid other 3-D inverse methods
with promising starting models by using a Heuristic
method. Our method consists of a Genetic Algorithm
with Elitism (EGA) to find the best solution in front
of a set of possible solutions. This Heuristic
method is a searching method that works well fronting
multi-modal and non-linear functions. The inversion
results applied to noise-corrupted synthetic gravity
data show that, regardless the starting model, the
estimated distribution of point masses offers valuable
information about the skeletal of 3-D homogeneous
sources in subsurface. Several tests with different
values of regularizing parameter were made in order
to bespeak the new heuristic regularizing function.

Introduction

Specifically, 3-D gravity-inversions infer the geometry or
the density-contrast distribution of geological sources in
the subsurface (Barbosa and Silva, 2011). Jointly with
the noise in the data, the inherent non-uniqueness that
exists in most of 3-D gravity-inversions promote severe
difficulties in those estimation-problems (Jackson, 1972).
As a result, the obtained models are ambiguous and/or
unstable. Commonly, these inverse problems are solved
by deterministic methods. These techniques present good
convergence only when a promising starting model is
achieved (Goldberg and Holland, 1988). Confronting this
drawback are the controlled random search optimization
methods (Montana, 1994; McCormack et al., 1999).
These random process, also known as Heuristic methods,
simulate natural phenomena algorithmically, like Simulated
Annealing (SA), Ant Colony Optimization (ACO) and
Genetic Algorithm (GA). The latter method starts from
a random population and progressively modifies the set
of solutions by simulating the evolutionary behaviour of
biological systems, until an acceptable result is achieved
(Parker, 1999). These algorithms have the capability of
finding global minima in functions with multiple local minima

regardless starting models (Smith et al., 1992).

In this paper, we focus our efforts on a method that aids
other 3-D gravity-inversions with good starting models. To
deal with instability presented in most of inverse methods,
we apply a new stabilizing function to a 3-D gravity-
inversion to retrieve the skeleton of geologic sources. The
stabilizing function, called equidistant function, is based
on the Minimum Spanning Tree (MST) problem (Held and
Karp, 1971; Deo, 1974; Graham and Hell, 1985; Gross and
Yellen, 2005) to equalize the distance among neighbouring
point masses. We couple the equidistant function to our
genetic algorithm with elitism (EGA) to solve the gravity-
inversion for two noise-corrupted synthetic data sets. For
both synthetic tests, we run the inversion three times with
different values of regularizing parameter (i.e., one without
regularization, one with the right regularization and one
over-regularized). With these examples, we show both
a satisfactory description of the ambiguity inherent to the
3-D gravity-inversion and the influence of the equidistant
function into the solutions.

Te gravity inverse problem

Let g
obs be a N-dimensional vector containing the vertical

component of the gravitational field measured on N
equally-spaced observation-points. This gravitational
response is produced by a 3-D buried source confined
beneath the earth’s surface. Let p be a 3-M vector with
the 3-D Cartesian coordinates of M point masses and m is
one value of mass for all point masses.

p = (x1,y1,z1, . . . ,xM ,yM ,zM) (1)

Bunching m and p, we create a 3-M + 1 parameter-vector
q illustrated as follows:

q = (m,p) (2)

The formulation of the inverse problem consists of finding
a 3-D spatial distribution of point masses (i.e., a vector q)
that fits the observed Gravity anomaly in a least squares
sense. Mathematically, we minimize the following objective
function:

Γ(q) = φ(q)+λθ(p) (3)

where the real-scalar function φ(q) is the data-misfit
function, given by

φ(q) =‖ g
obs −g(q) ‖2 (4)

where ‖ . ‖2 is the Euclidean Norm. The function φ(q)
computes the difference between measured and predicted
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data at the same measurement points. The function
θ(p), also known as stabilizing function, imposes physical
and/or geologic attributes on the solution. Instead of using
traditional Tikhonov regularizations (Backus and Gilbert,
1967; Levine, 1979), we develop a new one called the
equidistant function. This geometric function (i.e., depends
only on vector p) imposes equidistant among the nearest
point masses. A more detailed view about the equidistant
function will be discussed next section. The real positive
number λ , also known as the regularizing parameter,
balances the relative importance between the data-misfit
function and the equidistant function.

The equidistant function

A particular strategy, and the one which we propose here,
is use the graph theory concepts. A graph is an ensemble
of nodes, or vertices, that can be connected by weighted
edges (Deo, 1974; Gross and Yellen, 2005; Hoory et al.,
2006). With this in mind, we associate the set of M

point masses with the vertices of an undirected graph.
The edges of this graph are weighted by the distances
among the point masses. This formulation allows us to
solve a traditional problem in graph theory: The Minimum
Spanning Tree (MST) problem (Held and Karp, 1971;
Graham and Hell, 1985; Singh, 2009). The MST problem
is to find a least cost spanning tree connecting all nodes
in an edge weighted graph (Zhou and Gen, 1999). There
are several algorithms to deal with the MST problem. In
our methodology, we implement the Kruskal’s algorithm
(Kruskal, 1956; Cormen, 2001). Kruskal’s algorithm finds a
minimum spanning tree for a connected weighted graph. It
finds a subset of the edges that forms a tree that includes
every vertex, where the total weight of all the edges in the
tree is minimized. The computational time for Kruskal’s
algorithm depends logarithmically on the number of edges
of the graph. The configuration of point masses should
respect the MST concept. This is not enough to produce
stable solutions. So, we apply a penalty for the edges of the
MST. This penalty imposes that the edges of a MST should
have the same length. In summary, this additional attribute
stabilizes the solutions by producing a homogeneous
spatial distribution of point masses. Mathematically, the
equidistant function can be defined as follows:

θ(p) =
M−1

∑
i=1

[di j(p)−d∗(p)]2 , j = 1, . . . ,M (5)

and

di j(p) =
√

(xi − x j)2 +(yi − y j)2 +(zi − z j)2 (6)

where di j(p) is the edge connecting the i-th and j-th
adjacent point masses, M is the number of point masses,
d∗(p) is the average distance among the edges of a MST
and p is the parameter-vector containing the coordinates
of the M point masses. This regularizing method needs no
matrix operations and offers a restricted degree-of-freedom
to the set of point masses. It is easy to implement and it is
useful to every discrete Potential-field inverse problem.

Genetic Algorithm with Elitism (EGA)

Genetic algorithms consist of a random search algorithm
based on the mechanics of natural selection and natural
genetics (Goldberg and Holland, 1988; Montana, 1994).
Genetic algorithms are widely used in optimization

problems due to its capacity of finding the global minima
of multi-modal functions (Holland, 1992). Differently from
deterministic methods, the genetic algorithms require not
only a starting model, but a set of starting models (i.e.,
an initial population). The initial population is randomly
selected inside a minimum and a maximum mass values.
The same is made for the Cartesian coordinates of the
point masses. These ranges are referred to as search
limits. The search limits are defined by the interpreter. The
former plays a crucial role in the convergence of Genetic
algorithms. At the end of the inversion, the estimated
mass should be as close as possible to the middle of
the mass ranges. Otherwise, we should reset the mass
ranges, based on how near the estimated mass is from
the top or bottom of the mass ranges, and then run the
genetic algorithm again. This is important to ensure that
the algorithm will guide us to a promising minimum that fits
the Gravity data.

The relevant stages in the implementation of the genetic
algorithm, such as crossover, mutation and selection of
parents are widely discussed in Goldberg and Holland
(1988) and Parker (1999). We consider an extra stage
in our implementation called elitism. At this stage, a
sub-population of ne individuals, decreasingly ordered in
terms of the objective function φ(q), is replicated to
the next generation. The elitism can be considered
as a convergence accelerator, because it allows the
appearance of a ”super-man” at the last generations.
Genetic algorithms with this strategy are referred to as
genetic algorithms with elitism or EGA (Chakraborty and
Chaudhuri, 2003). We implement the EGA to minimize the
objective function (Equation 2) for a value of λ .

Synthetic examples

To validate our methodology and better expose the
application of the equidistant function, we present two
tests with synthetic data simulating gravitational anomalies
caused by simple homogeneous sources. In both tests,
the observed data was calculated on a regular grid of
41 x 33 observation points in the x- and y- directions,
totaling 1353 equally-spaced data. The gravity data was
corrupted with zero-mean Gaussian pseudo-random noise
with a standard deviation of 1.0 mGal. A residual histogram
is presented in order to complement the data-fit analysis
of the best solution obtained by the EGA. The results
are good if the residual histogram present a Gaussian
behaviour. For both tests, we perform three inversions
each. One with no regularization (i.e., λ = 0), one with
optimal value of the regularizing parameter (obtained by
the L-Curve method) and an over-regularized test. With
this, we can clearly present the powerful of our regularizing
method.

Vertical dyke

In this first test, we buried a vertical prism, with total mass
of m = 6800 kg, elongated at z-direction, with top and base
at 0.6 and 4.0 km, respectively. Both x- and y-directions
vary from -1.0 km to +1.0 km. With this, we are simulating,
in a simplified manner, a gravitational signal produced by a
vertical dyke. To perform the inversion, we use M = 20 point
masses, 100 individuals in the population, 10 individuals
replicated in the elitism and 250 generations. We define
the ranges for the horizontal coordinates by analysing the
amplitude and position of the Gravity anomaly. For this
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test, we set, in km, x ε [-4.0, +4.0], y ε [-6.0, +6.0], z ε
[+0.1, +7.0]. The range for the estimated mass is defined,
by guess, an order of magnitude difference between the
maximum and the minimum value of mass.

Figure 1 shows the results without stabilization (i.e., λ =
0). Figure 1A is the perspective view of the vertical prism
jointly with the point masses.

Figure 1: Solution without regularization for the vertical
dyke example. In (A), we present the 3-D view of the
true source (vertical prism) jointly with the point masses
(gray points). (B) The fit between the observed data (black
lines) and the predicted data (red lines). The black and red
numbers represent the contour intervals. (C) The residual
histogram with mean of 0.84 mGal and standard deviation
of ± 1.22 mGal.

Clearly, there is a subgroup of point masses disconnected
from the uppermost set. The estimated total-mass is 78000
kg, higher than the true 68000 kg. We observe that the
deeper point masses do not contribute significantly to the
data-fit. Despite a good fit between observed and predicted
data (Figures 1B and 1C), we reject this unstable solution.
Another reason to discard this solution is that the set of
point masses are not homogeneously distributed along the
interpretive model.

Figures 2 present the inversion results with the optimal
value of the regularizing parameter (i.e., λ = 1.0). We
can see in Figure 2A that the deeper point masses of the
former example are now building the skeleton of the prism
properly. It’s possible to observe that the point masses are
surrounding the symmetry axis of the vertical prism. The
estimated total-mass is 78892 kg, where the total-mass of
the true source is 68000 kg. In Figure 2B, we observe that

Figure 2: Solution with adequate regularization. (A) The
3-D view of the true source (vertical prism) together with
the set of point masses. (B) The fit between observed
(black lines) and predicted (red lines) data. The black and
red numbers are the contour intervals. (C) The residual
histogram with mean of 0.74 mGal and standard deviation
of ± 1.34 mGal.

the fit between the observed and the predicted data is also
good, corroborated by the residual histogram (Figure 2C).

To better illustrate the powerful of the equidistant function,
we perform an inversion with an exaggerated regularizing
parameter (λ = 10

5). Figure 3A shows the over-regularized
solution, the point masses are extremely compact inside
the prism, which means that the EGA prioritized the
minimization of the equidistant function in equation 3.
The over-regularized solution creates a compact spatial
distribution of point masses that does not fit the true Gravity
data. This test presents a large misfit between observed
and predicted data (Figures 3B and C). The estimated
total-mass is 94420 kg, again higher than the true value
of 68000 kg.

Dipping dyke

The second test is a more complex model, where 4 prisms,
with total mass of m = 162000 kg, are placed in order to
form a staircase. With this, we are simulating a gravitational
signal produced by a dipping dyke. For this test, we use M
= 40 point masses, 100 individuals in the population, 10
individuals replicated in the elitism and 350 generations.
For this test, we set, in km, x ε [-5.0, +5.0], y ε [-6.0, +6.0],
z ε [+0.1, +6.0]. We define the ranges for the horizontal
coordinates and the mass range by the same criteria of the
former example.

Again, Figure 4 present unstable results (i.e., λ = 0).
Figure 4A shows both the true source and the point
masses. We observe that the deeper point masses
are scattered. This result shows that the solution is
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Figure 3: Over-regularized solution. The 3-D view of the
true source (vertical prism) and the set of point masses
(gray points). (B) The fit between observed (black lines)
and predicted (red lines) data. The black and red numbers
are the contour intervals. (C) The residual histogram with
mean of 1.29 mGal and standard deviation of ± 5.53 mGal.

neither homogeneously distributed along the true source
nor stabilized.

Figure 4: Solution without regularization. The 3-D view of
the true source (vertical prism) and the set of point masses
(black point masses). (B) The fit between observed (black
lines) and predicted (red lines) data. The black and
red numbers are the contour intervals. (C) The residual
histogram with mean of 1.04 mGal and standard deviation
of ± 1.73 mGal.

The estimated mass is 187870 kg, upper than the true
mass of 162000 kg. There is a good fit between observed
and predicted data (Figures 4B and C). We observe
that the point masses are non-homogeneously distributed
along the true source (Figure 4A). But as we know, this
solution should be stabilized. For so, we re-run EGA with
the equidistant function by setting λ as 4.4 x 10

−2.

Figure 5A presents the true source and the solution of the
best individual of the 250

th generation of the EGA. We now
see the point masses more homogeneously distributed
along the correct dip of the source, verifying the good
performance of our equidistant function. In Figure 5B and
C we present an acceptable fit between observed and
predicted data. The value of the equidistant function for
this test is θ(p) = 2.70.

Now we perform the inversion with an exaggerated λ = 1.0.
The result (Figures 6A, B and C) show a compact solution
without fitting the data. The point masses neither rescue
the correct dip of the true source nor delineate properly the
framework of the source. The residual histogram (Figure
6) presents a standard deviation of 8.88 mGal, higher than
the correct value (1.0 mGal).
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Figure 5: Solution with λ = 0.44 x 10
−2. The 3-D view of

the true source (vertical prism) and the set of point masses
(black point masses). (B) The fit between observed (black
lines) and predicted (red lines) data. The black and
red numbers are the contour intervals. (C) The residual
histogram with mean of 0.92 mGal and standard deviation
of ± 1.87 mGal.

Conclusions

We have introduced a new 3-D gravity-inversion to
delineate the skeleton of homogeneous sources through
a set of point masses. This aid other more-complex 3-
D inversions with their starting models. To stabilize the
solutions, a new regularizing function, called equidistant
function, has been added to the inversion. We
parametrized the earth’s subsurface as a set of simple
point masses, all with the same mass. The ensemble of
point masses was associated with a graph to solve the
minimum spanning tree (MST) problem. This problem
restricts the spatial distribution of point masses in order
to adjust both predicted and observed Gravity data. We
then minimize the equidistant function to equalize the
distances among nearest point masses. We can say
that the equidistant function worked as a ”modelling clay”.
We consider the equidistant function ideal to work with
Heuristic methods. Because of this, a Genetic Algorithm
with Elitism (EGA) has been implemented to randomly
create a set of initial solutions (i.e., an initial population)
and, by following Darwin’s evolutionary theory, find a stable
and a homogeneous 3-D distribution of point masses. Our
method also provided an over-estimation of the total-mass
of the geologic source in subsurface. Tests on synthetic
data showed that the equidistant function was able to

Figure 6: Over-regularized solution with λ = 1.0. The 3-
D view of the true source (vertical prism) and the set of
point masses (gray spheres). (B) The fit between observed
(black lines) and predicted (red lines) data. The black and
red numbers are the contour intervals. (C) The residual
histogram with mean of 0.012 mGal and standard deviation
of ± 8.88 mGal.

reconstruct elongated sources with correct dip information.

As a future work, we can devote some attention on
the Multi-objective optimization approach, where the
regularizing parameter will be unnecessary to the stabilize
the solutions. Other possibility lies in the Hybrid inversion,
where we mix both Heuristic and deterministic methods.
Our first intention is apply the same methodology to
a magnetic inversion, in order to estimate the correct
magnetization direction of 3-D homogeneous magnetic
sources.
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