

Contaminação e detecção de material orgânico por método da eletrorresistividade

Carlos H. Alexandrino; Israel César Santana Júnior; Jefferson Batemarque Gomes; Paulo Henrique Gomes Silva; Rafael Miguelão Gottardi. Universidade Federal dos Vales do Jequitinhonha e Mucuri – Campos Avançado do Mucuri.

Copyright 2014, SBGf - Sociedade Brasileira de Geofísica. Este texto foi preparado para a apresentação no VI Simpósio Brasileiro de Geofísica, Porto Alegre, 14 a 16 de outubro de 2014. Seu conteúdo foi revisado pelo Comitê Técnico do VI SimBGf, mas não necessariamente representa a opinião da SBGf ou de seus associados. É proibida a reprodução total ou parcial deste material para propósitos comerciais sem prévia autorização da SBGf.

Resumo

Apresenta-se nesse trabalho a descrição de uma experiência para simular o efeito da presença da solução salina no subsolo. O método utilizado foi o da eletrorresistividade, com a emprego da técnica do Caminhamento Elétrico. Os resultados obtidos mostram que a resistividade aparente é fortemente influenciada pela presença de materiais tóxicos, como por exemplo, o chorume.

Introdução

Um estudo sobre contaminação de solo tem o intuito de prever anomalias que possam afetar o meio ambiente, com isso foram utilizados métodos da eletrorresistividade para mapear e consequentemente amenizar os danos causados.

Com o aumento do consumo humano, tem se tornado frequente, o acúmulo de lixo em aterros sanitários, por exemplo, em que o chorume produzido pode escoar e alcançar um lençol freático ou um aquífero. Outro exemplo seria o chorume liberado pela decomposição de corpos em um cemitério (que geralmente se situa em locais elevados, como morros), tendo também o impacto sobre aquífero e/ou lençóis freáticos (GALLAS et al 2005).

Dentre os fatores que potencializam a utilização dos métodos da eletrorresistividade, para fins de estudo litológicos, um dos mais importantes é a diferença de potencial presente no solo. Essa condição é que permite a imensa possibilidade de aplicação do método em estudos ambientais e hidrogeológicos, pois normalmente as substâncias contaminantes geram líquidos com alta concentração em sais (GALLAS et al. 2005).

Área de Estudo

Esse estudo foi realizado em uma área dentro do Campus da UFVJM – Universidade Federal dos Vales do Jequitinhonha e Mucuri, no Município de Teófilo Otoni/MG, através de uma simulação do evento investigado, fazendo a abertura de uma vala para simular um aqüífero fraturado, conforme descrito na figura (1).

Figura 1 – foto da preparação da experiência

Em termos geomorfológicos, o município está compreendido na unidade "Planaltos Dissecados do Leste de Minas", em uma "zona de pontões", caracterizada por formas de relevo evoluídas por processos de erosão diferencial e descamação concêntrica. (MAGALHÃES JR., A.; MOREIRA, P. F.).

Fundamentação Teórica

Pertencente ao grupo dos métodos geoelétricos, a eletrorresistividade, é um método geofísico cujo princípio está baseado na determinação da resistividade elétrica dos materiais que, juntamente com a constante dielétrica e a permeabilidade magnética, expressam fundamentalmente as propriedades eletromagnéticas dos solos e rochas. Os diferentes tipos de materiais existentes no ambiente geológico, apresentam como uma de suas propriedades fundamentais o parâmetro físico resistividade elétrica, o qual reflete algumas de suas características servindo para caracterizar seus estados, em termos de alteração, faturamento, saturação, etc., e até identificá-los litologicamente, sem necessidade de escavações físicas" (BRAGA, A. C. O., 2007).

Existem duas técnicas principais do método da eletrorresistividade. São elas, a Sondagem Elétrica Vertical – SEV e o Caminhamento Elétrico – CE. A técnica da SEV consiste em uma sucessão de medidas de um parâmetro geoelétrico, efetuadas, a partir da superfície do terreno, mantendo-se uma separação crescente entre os eletrodos de emissão de corrente e recepção de potencial. Quando os eletrodos são alinhados na superfície do terreno de maneira simétrica, e durante a sucessão de medidas, a direção do arranjo e o centro do dipolo de recepção de potencial permanecem fixos. "Existem dois tipos principais de arranjos para o desenvolvimento da técnica da SEV: Shlumberger e Wenner." (BRAGA, A. C. O., 2007).

Neste estudo, optou-se pela técnica do CE. Essa técnica está relacionada à resistividade, que é obtida a partir de medidas feitas na superfície do local analisado, sendo

investigada sua variação na horizontal confirmando sua profundidade. Sendo assim, o CE é usado mais comumente na aquisição de dados para confecção e plotagem de mapeamentos de subsolo e subsuperfícies, uma vez que a resistividade de rochas e materiais litológicos, assim como água, e resíduos poluentes podem ser facilmente identificados (MOREIRA et al., 2009).

Utilizou-se nesse trabalho o arranjo dipolo-dipolo em que a profundidade de investigação depende diretamente do espaçamento entre os eletrodos, sendo Z a profundidade do nível investigado e R o espaçamento entre os centros dos eletrodos, temos que Z=R/2, onde R é a distância entre os centros dos dipolos considerado (AB e MN). Entretanto, na prática, essa relação é vista com maior coerência se for utilizado um valor de R aproximadamente igual a um quarto da profundidade do nível investigado.

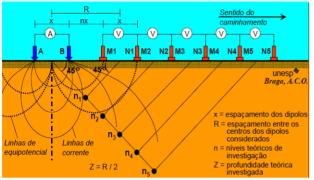


Figura 2 – Arranjo de desenvolvimento Dipolo-Dipolo – CE. Fonte: (BRAGA, A. C. O., 2007).

A expressão utilizada para calcular a resistividade aparente é:

$$\rho_a = k \frac{\Delta V}{I} \tag{1}$$

Obtida por meio da emissão de uma corrente I, emitida através de dois eletrodos A e B e a diferença de potencial ΔV , usualmente medida através dos eletrodos de potencial ditos M e N. Com isso é possível obter a resistividade aparente ρ_a .

$$k = \frac{2\pi}{\frac{1}{AM} - \frac{1}{RM} - \frac{1}{AN} + \frac{1}{RN}}$$
 (2)

onde K é o fator geométrico que depende das distâncias entre os eletrodos de coerente (A e B) e de potencial (M e N), I é a corrente gerada entre os eletrodos de corrente e ΔV a diferença de potencial estabelecida entre M e N.

Materiais e Métodos

Para a execução do estudo, utilizou-se dois tubos de PCV, preenchidos de espuma, com orifícios ao redor de suas bases, de forma que permitissem, gradualmente, a vazão da solução ionizada. Após a abertura da vala, foi usado um pedaço de forro PCV (figura 3) para a divisão

da vala em duas células, uma para recebimento da solução ironizada e outra a água comum, para comparação.

Figura 3 – Preparação do local do experimento

A vala foi preenchida de paralelepípedo (granito) e coberta pelo material do solo, composto predominantemente de argila e os tubos posicionados, conforme mostra a figura (3). Em seguida, delimitado sua área real e posicionando quatro linhas (seções) dispostas paralelamente, com espaçamento de 0,25 m entre os eletrodos, sendo assim possível, mapear quatro níveis de profundidade com até 0,5m abaixo do solo. Os tubos foram preparados, figura (4) e fixados no local.

Figura 4 – Preparação dos tubos para realização do experimento.

Utilizando uma fonte de corrente alternada de 20V e um multímetro calibrado em 200µA foi coletado, por meio da técnica do CE (arranjo dipolo-dipolo), uma malha de 94 medidas contendo resultados em ddp (diferença de potencial), para cada linha investigada, dispostas nos quatro níveis.

Após a coleta e organização dos dados, foi calculado o fator geométrico e a resistividade aparente (ρ_a) em cada ponto investigado para obtenção das pseudo seções geoeletricas.

Resultados

A figura (5) mostra o esquema de distribuição das linhas de medidas do arranjo utilizado. As linhas 1 e 4 são as externas e as linhas 2 e 3 são as centrais. Os tubos por onde foi inserido a solução salina estão entre as linhas 2 e 3.

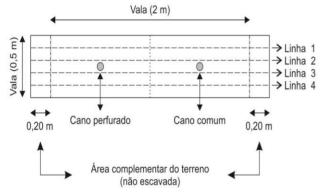


Figura 4 – Esquema das distribuição das linhas para realização da medidas

Após a inserção da solução salina, esperou-se 30 minutos para realização da primeira medição. Uma hora depois foi realizada a segunda medição.

Apresenta-se nas figuras (6a e 6b) os resultados das pseudo-seções geoelétricas da linha 1. Observa-se que o valor da resistividade aparente diminui sensivelmente entre as duas medições, em função da difusão a solução salina introduzida nos tubos.

As figuras (7a e 7b) mostram os resultados para as pseudo-seções geoelétricas da linha 2, entre os dois intervalos de tempo e as figuras (8a e 8b) as pseudo-seções geoelétricas da linha 3. Pode-se observar uma forte variação da resistividade aparente entre as duas medidas, tanto na linha 2, quanto na linha 3.

As figuras (9a e 9b) expõem o resultado da linha 4. Essa linha apresentou a menor variação entre os valores medidos entre os dois instantes de tempo.

Conclusão

A experiência descrita nesse trabalho apontou que a resistividade aparente é intensamente afetada pela presença da solução salina. Desta forma, o método geoelétrico da eletrorresistividade, quando aplicado a técnica do Caminhamento Elétrico mostrou-se uma

excelente ferramenta para realização de monitoramentos ambientais. E a simulação descrita nesse trabalho pode ser utilizada para treinamento dessa excelente técnica geofísica.

Agradecimentos

À direção do Instituto de Ciência Engenharia e Tecnologia da Universidade Federal dos Vales do Jequitinhonha e Mucuri, pelo incentivo e orientação no processo de aprendizagem dos métodos geoelétricos. Ao técnico responsável pelo Laboratório de Física, o prof. Fausto Cyrano de Oliveira pela orientação e ajuda no manuseio dos aparelhos elétricos.

Referências

BRAGA, A. C. O. Geofísica Aplicada – Módulo: Métodos Geoelétricos Aplicados nos Estudos de Captação e Contaminação das Águas Subterrâneas. UNESP – Universidade Estadual Paulista "Julio de Mesquita Filho" – Rio Claro – 2007.

MAGALHÃES JR., A.; MOREIRA, P. F. Eventos de "desequilíbrio morfodinâmico" na evolução da evolução geomorfológica de Minas Gerais – O caso de Teófilo Otoni/Caraí – Região Nordeste do Estado. – UFMG – Universidade Federal de Minas Gerais – Geonomos – Vol. 6, nº 2, p.23 – 32; - 1998.

GALLAS, J. D. F. et al. **Contaminação por chorume e sua detecção por resistividade**. Revista Brasileira de Geofísica, v. 23, n. 1, p. 51-59, jan./mar. 2005.

MOREIRA, C. A.; BRAGA, A. C. de O.. Anomalias de Cargabilidade em Aterro de Resíduos Sólidos Domiciliares. Revista Brasileira de Geofísica, Rio de Janeiro, v. 27, n.1, p. 55-62, jan./mar. 2009.

MOREIRA, C. A.; BRAGA, A. C. de O.; FRIES, M.. **Degradação de resíduos e alterações na resistividade elétrica, pH e Eh.** Revista Brasileira de Geofísica, Rio de Janeiro, v. 27, n.2, p. 283 – 293, abr./jun. 2009.

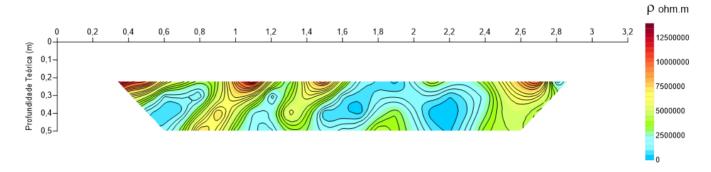


Figura 6a – Pseudo seção geoelétrica da resistividade aparente da linha 1 medição as 08h45min.

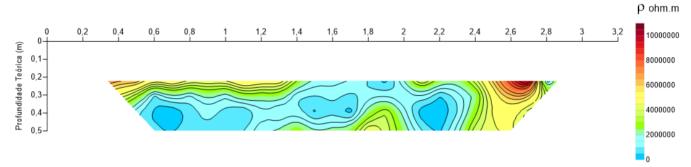


Figura 6b – Pseudo seção geoelétrica da resistividade aparente da linha 1 medição as 09h45min.

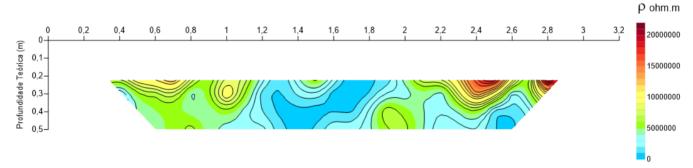


Figura 7a – Pseudo seção geoelétrica da resistividade aparente da linha 2 medição as 08h45min.

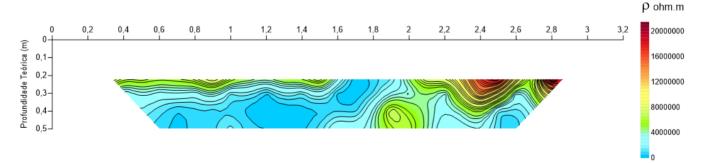


Figura 7b – Pseudo seção geoelétrica da resistividade aparente da linha 2 medição as 09h45min.

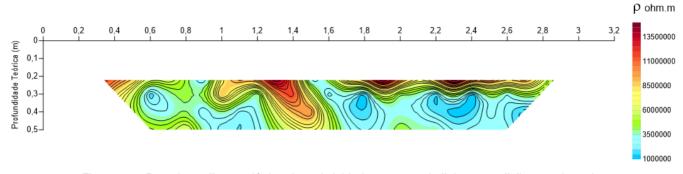


Figura 8a – Pseudo seção geoelétrica da resistividade aparente da linha 3 medição as 08h45min.

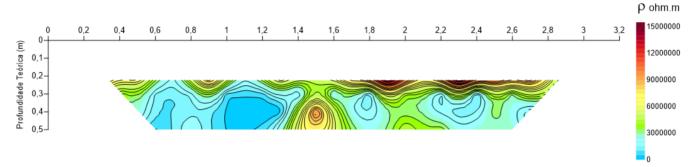


Figura 8b – Pseudo seção geoelétrica da resistividade aparente da linha 3 medição as 09h45min.

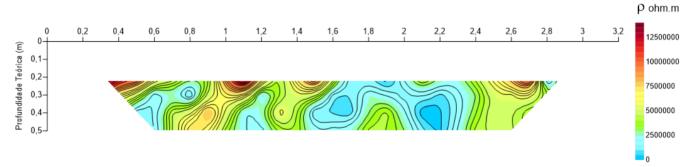


Figura 9a – Pseudo seção geoelétrica da resistividade aparente da linha 4 medição as 08h45min.

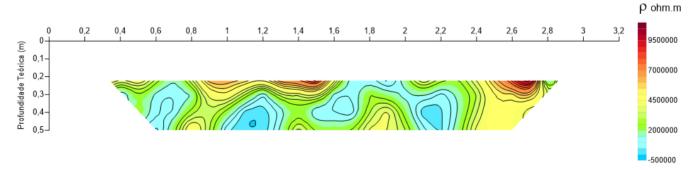


Figura 9b – Pseudo seção geoelétrica da resistividade aparente da linha 4 medição as 09h45min.