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Abstract

A new method is developed and specialized to
solve the electric field integral equation with axial
symmetry. The method is applied to induction
logging with invasion using only FFT (Fast Fourier
Transform) based convolutions and rapidly convergent
iterations and is therefore suitable for routine well-
site interpretation. The computational iterative
engine requires relatively few lines of code, but in
general requires large enough computer memory (at
least 32 Gb) to fit the relevant 3D arrays in core.
Example comparison calculations using the FFT based
transforms demonstrate their speed an accuracy.
Examples of invasion modeling and comparisons with
an analytic radial layered model are given.

Introduction

Typical integral equation solutions of the induction logging
problem often result in full matrices usually limiting
such methods to cases where relative anomaly volumes
are small. For linearized solutions, the convolutional
form of integral equation is often exploited by Fourier
transforming equation into spatial frequency domain to
perform convolution between the Greens function and
volume current using FFTs. For the borehole induction
logging problem with invasion however, the integral
equation naturally results in order 1 Fourier-Bessel
transforms not directly amenable to Cartesian coordinate
FFT computation.

Then too, to go beyond linearized form of the integral
equation, when for example inter-bed conductivity
contrasts are high, iteration is necessary. In this case both
forward and inverse Fourier-Bessel transforms of order 1
are required. However, when contrasts are high, iterative
methods based upon the Neumann series solution may not
converge and the equation needs to be renormalized. A
3D FFT method exploiting underlying axi-symmetry of the
fields is developed. Test cases of fields and convolutions
computed by conventional and this new method show that
it is accurate and significantly faster.

Axial Symmetry Integral Equation

For an induction tool centered in a circular vertical borehole
in a layered environment with invasion, problem becomes
axi-symmetric. Then the electric field of transmitter

loop has only a φ component. The first practical and
efficient method to compute electromagnetic tool response
in such an axi-symmetric formation with layering and
invasion appeared in 1984 (Chew et. al.) where good
agreement was obtained with a finite element method but
was observed to be 250 times faster. The method is
sometimes called semi-analytic and was later generalized
(Chew et. al. 1993). A higher order approximate solution
to axi-symmetric logging problem (Gao, 2006), also uses
renormalization (Habashy,1993) and FFT computation.
Their efficient method shows good agreement with a more
general integral equation method for cases of reasonable
step invasion conductivity contrasts and relatively deep
invasion. The FFT method here for this geometry requires
no such approximations and does not depend on finite-
element radial expansions. Integral equation with axial
symmetry in this case is

eφ (x) = e(0)
φ

(x)+
1

2π

∫
g1(x,x′) j(x′)d3x′ , (1)

where the volume current j(x) in terms of profile function
p(x) is

j(x) = p(x)eφ (x) ,
p(x) = k2(x)− k2

0 .
(2)

Integration in equation (1) is over all-space and the axi-
symmetric Green’s function is

g1(x,x′) =
∫ 2π

0
cos(φ −φ

′)g0(x,x′)dφ
′ . (3)

The scalar Green’s function g0(x,x′) is the familiar

g0(x,x′) =
eik0R

4πR
, R = |x−x′| . (4)

Using the convolution theorem in rectangular coordinate z,
integral equation (1) in spatial-frequency domain (Kρ ,Kz)
can be shown to have the simple algebraic form

E(Kρ ,Kz) = E(0)(Kρ ,Kz)+
J(Kρ ,Kz)

K2− k2
0

. (5)

In equation (5) transform J(Kρ ,Kz) of the volume current is
defined as

J(Kρ ,Kz) =
∫

∞

−∞

e−iKzzdz
∫

∞

0
ρJ1(Kρ ρ) j(ρ,z)dρ , (6)
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where in equation (6) K2 = K2
ρ +K2

z and the unknown total
electric field transform E(Kρ ,Kz) is similarly defined.

An important detail is relationship between Fourier-Bessel
transforms and 3D Cartesian Fourier transforms. For FFT
evaluation of Fourier-Bessel representations such as in
equation (6), one approach is to use a generalization of
Ferrari’s (Ferrari,1995) or Mook’s (Mook, 1993) method.
Mook determines an equivalence between a Fourier-
Hankel transform of order zero and two successive FFTs.
This can be generalized to order one transforms as
required here, but it is no faster, and is more difficult
to implement than simply using 3D Cartesian Fourier
transforms. To compute transforms of functions f (x)
for typical axi-symmetric loop source excitation, consider
Fourier-Bessel transform pair of order n, n = 0,1,2, · · ·

Fn(Kρ ) =
∫

∞

0
Jn(Kρ ρ) fn(ρ)ρ dρ ,

fn(ρ) =
∫

∞

0
Jn(Kρ ρ)Fn(Kρ )Kρ dKρ .

(7)

For order 0 transforms note that since

J0(Kρ ρ) =
1

2π

∫ 2π

0
e−iKρ ρ cosφ dφ , (8)

it follows that Fourier-Bessel transform F0(Kρ ) can also be
written as a 2D Cartesian Fourier transform

F0(Kρ ) =
1

2π

∫ 2π

0

∫
∞

0
dφρdρe−iKρ ρ cosφ f0(ρ) ,

=
1

2π

∫
∞

−∞

∫
∞

−∞

dxdye−iK·x f0((x2 + y2)1/2) ,

(9)

where

K ·x = Kxx+Kyy . (10)

Result (9) can be generalized to order one Fourier-Bessel
transforms resulting in the pair

F1(Kρ ) =
i

2π

[ Kx

Kρ

∫
d2xe−iK·x cosφ f1(ρ)+

Ky

Kρ

∫
d2xe−iK·x sinφ f1(ρ)

]
,

(11)

f1(ρ) = − i
2π

[ x
ρ

∫
d2KeiK·x cosφKF1(Kρ )+

y
ρ

∫
d2KeiK·x sinφKF1(Kρ )

]
.

(12)

When formation contrasts are high and or anomaly
volumes large, iteration of equation (1) can diverge.
Thus for computational reasons, to reduce the norm
of the integral operator, use Habashy’s (Habashy,1993)
normalized form of equation (1), i.e.,

eφ (x) = n(x)e(0)
φ

(x)+n(x)
∫

g̃1(x,x′)[(k2(x′)− k2
0)

(eφ (x′)− eφ (x))]d3x′ ,
(13)

where the normalization function is defined as

n(x) = [1−m(x)]−1 , (14)

and where m(x) is defined by the 3D convolution

m(x) =
1

2π

∫
g1(x,x′) p(x)d3x′ . (15)

Computation of normalization function m(x) provides a
good test for FFT based order 1 transforms defined by
equations (11) and (12) . For radial profiles independent
of z note that

P(Kρ ,Kz) = 2πP(Kρ )δ (Kz) , (16)

In this case equation (15) takes simple form

m(x) =
∫

∞

0
Kρ dKρ J1(Kρ ρ) .

P(Kρ )

K2
ρ − k2

0
, (17)

As a test problem, consider a radial ramp profile is given by

p(x) = k2
xo +[αρ +β ](u(ρ− r0)−u(ρ− ra))+ k2

t u(ρ− ra) ,
α = (k2

t − k2
xo)/(ra− r0) ,

β = (k2
xora− k2

t r0)/(ra− r0) ,
(18)

and u(ρ) is the unit step function

u(ρ) =
{

1, ρ > 0,
0, otherwise. (19)

Here quasi-static squared wavenumber is k2 = iωµ0σ .
Example computations use following parameters. Flushed
zone and formation conductivities are σxo = 0.2 [S/m] and
σt = 0.1 [S/m]. Invasion radii are r0 = 0.4 [m] and ra = 0.8
[m]. Borehole radius is b = 0.3048 [m], with borehole
conductivity of σb = 1 [S/m]. Transmitter loop has peak cw
current I0 = 1 [A], frequency f = 20 [kHz], and is located at
origin. Loop radius is aT = 0.04 [m] and has nT = 10 turns.

For ramp invasion profile, numerical 2D FFT transform of
equation (12) is used to compute normalization function
m(x) using spectral representation of equation (17). For
comparison, function is also computed using a form of
representation given by equation (15) as well as another
method using known closed form expressions of the profile
spectrum. Real and imaginary parts of this function are
shown in Fig. 1. The comparison is seen to be excellent.

To test iterative form of renormalized equation defined by
equation (13), use ramp profile function given by equation
(18) and compute forward and inverse 3D FFT transforms
as necessary for one iteration. For test case 512 points
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are used in x and y directions and 256 points in the z
direction. This results in large problem of 138 million
complex unknown discrete electric field amplitudes. One
iteration consisting of a forward and inverse 3D transform
takes approximately 7.5 seconds on an i7 laptop computer.
Memory for this computation is approximately 20 Gb.

Fig. 2 compares in amplitude and phase of secondary
electric field for first order Born, sixth order Born, and an
analytic radial model consisting of N discrete radial shells.
Comparison is versus ρ with z = −0.368 [m]. Fig. 3 is the
same input parameter comparison for total electric field.
Note that zeroth order Born does not at all characterize
the anomaly, but as is known, does ok in the total field
comparison. Note near transmitter the nonlinear interaction
is quite well resolved by sixth order Born. Note also total
field magnitude is approximately two orders of magnitude
larger than secondary field. Comparison could be better,
but the limit of my computer memory permits only a ∆x =
0.123 [m] discretization used in this example.
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Figure 1: Normalization function defined by equation (15)
for ramp profile.

Conclusion

A new method to solve electric field integral equation has
been applied to induction logging problem. Results show
promise to compute large scale models in relatively little
time. This is important particularly for inverse problem
in petrophysical interpretation. An ultimate goal of this
research is 3D vector electromagnetic modeling of tri-axial
induction tools.
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Figure 2: Secondary Electric field comparison as a function
of ρ.
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Figure 3: Total Electric field comparison as a function of ρ.
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Figure 4: Percent relative difference between total field
analytic solution and FFT iteration method.
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