

Processamento, Inversão e Imageamento de Dados Sísmicos Marinhos da Bacia do Jequitinhonha

Silva, D. A. B; Leite, L. W. B. Universidade Federal do Pará

Copyright 2012, SBGF - Sociedade Brasileira de Geofísica. Este texto foi preparado para a apresentação no V Simpósio Brasileiro de Geofísica, Salvador, 27 a 29 de novembro de 2012. Seu conteúdo foi revisado pelo Comitê Técnico do V SimBGF, mas não necessariamente representa a opinião da SBGF ou de seus associados. É proibida a reprodução total ou parcial deste material para propósitos comerciais sem prévia autorização da SBGF.

RESUMO

Este trabalho é voltado ao processamento, inversão e imageamento da linha L2140266 selecionada da bacia sedimentar do Jequitinhonha, Bahia, adquirida pela PE-TROBRAS, e baseia-se na aplicação das metodologias de empilhamento NMO/CRS e na inversão tomográfica da onda NIP, onde a migração do tipo Kirchhoff pósempilhamento, no tempo e na profundidade, é comum a todas as técnicas. Além disso, foi aplicado o empilhamento CRS-parcial para densificação das famílias CMPs. Vários testes foram realizados para otimizar parâmetros, aberturas dos operadores, minimizar a função objetivo e regularizar os parâmetros do modelo, e como resultado foram escolhidos os fluxogramas de processamento que geraram melhor qualidade visual das seções, com os principais resultados comparados no decorrer do trabalho para ambas metodologias.

INTRODUÇÃO

O objetivo prático e especifico deste trabalho foi aplicar as três metodologias com a finalidade de complementar e aumentar a quantidade de informações acerca das características da subsuperfície, e dar mais opções para as interpretações geológicas-sísmicas dos resultados obtidos. Os principais resultados são modelos de distribuição de velocidades, e seções empilhadas e migradas, discutidas de forma mais detalhada na sequência do trabalho.

Para o processamento, inversão e imageamento foram utilizados os aplicativos CWP/Un*x (Forel et al., 2005), crsstack (Mann, 2003), crsstack_supergathers (Baykulov, 2008) e niptomo (Duveneck, 2004).

METODOLOGIA/PROBLEMA INVESTIGADO

A metodologia do empilhamento NMO é baseada no modelo de camadas plano-horizontais, cujo tempo de trânsito para as reflexões primárias é dado por uma aproximação hiperbólica dada por Yilmaz (1988):

$$t^{2}(x) = t^{2}(0) + \frac{x^{2}}{v_{\mathsf{NMO}}^{2}},$$
(1)

onde x é o afastamento fonte-receptor, t(x) o tempo de trânsito, t(0) o tempo-duplo vertical simples e $v_{\rm NMO}$ a velocidade de sobretempo normal. Necessita-se de um modelo de distribuição de velocidades obtido através da marcação de pares $(v_{\rm NMO},t_0)$ no mapa de coerência semblance, e que serve à correção, ao empilhamento e a migração.

O empilhamento CRS, descrito inicialmente por Müller (1999) e Mann (2002), é baseado no modelo de camadas limitadas por interfaces curvas, e considerado independente do modelo de velocidade, onde o tempo de trânsito para reflexões primárias é dado pela aproximação hiperbólica:

$$t_{\mathsf{CRS}}^2(x_m, h) = \left[t(0) + 2\frac{\sin\beta_0}{v_0}(x_m - x_0)\right]^2$$
(2)

$$+2t(0)\frac{\cos^2\beta_0}{v_0}\left[\frac{(x_m-x_0)^2}{R_{\rm N}}+\frac{h^2}{R_{\rm NIP}}\right]^2,$$

sendo x_m o ponto-médio-comum, v_0 a velocidade próxima ao ponto de emergência e h o meio-afastamento fonte-receptor. Neste método se recupera o trio de atributos das duas ondas hipotéticas N e NIP através da solução de um problema de otimização triparamétrica não-linear, e que são: o ângulo de emergência β_0 , o raio de curvatura R_N e o raio de curvatura R_{NIP} . Estes atributos carregam informações sobre a inclinação, a profundidade e a forma das interfaces refletoras. Com o objetivo de melhorar estes resultados se optou pela utilização do processo de empilhamento CRS-parcial descrito por Baykulov & Gajewski (2008), e que produziu seções de melhor razão sinal/ruído. Este processo consta da interpolação de famílias CMP ao cubo de dados com o objetivo de densificar a malha previamente ao empilhamento CRS sob a condição de super-famílias.

A inversão tomográfica da onda NIP, desenvolvida por Duveneck (2004), visa estabelecer um mapa de distribuição de velocidades com variação lateral, para servir ao imageamento em profundidade, e utiliza os atributos CRS através dos dados marcados na seção ZO empilhada. O problema é de ajuste de curva não-linear no sentido dos quadrados-mínimos entre as marcações dos parâmetros dos dados de entrada d, $\left[\tau_0, \mathsf{M}_{\mathsf{NIP}}^{(\xi)}, \mathsf{p}^{(\xi)}, \xi_0\right]$, e as correspondentes quantidades do modelo direto **m**, $\left[x, z, \theta\right]^{(\mathsf{NIP})}$, associadas ao ponto NIP do modelo. Tal

desajuste é minimizado pela função custo na forma:

$$S(\mathbf{m}) = \frac{1}{2} \Delta \mathbf{d}^T(\mathbf{m}) \mathbf{C}_{\mathsf{D}}^{-1} \Delta \mathbf{d}(\mathbf{m}) + \frac{1}{2} \varepsilon'' \mathbf{m}^{(v)T} \mathbf{D}'' \mathbf{m}^{(v)}, \quad (3)$$

onde $\Delta \mathbf{d}(\mathbf{m}) = \mathbf{d} - \mathbf{f}(\mathbf{m})$ é o vetor desvio dos dados, \mathbf{C}_{D} a matriz covariância dos dados, \mathbf{D}'' a matriz da regularização, ε'' o fator de ponderação entre a primeira parte que mede o ajuste de curvas e a segunda parte que mede o nível de regularização do problema, e $\mathbf{m}^{(v)}$ o vetor modelo de velocidade.

RESULTADOS

Os parâmetros e aberturas de operadores escolhidos para o processamento desta linha, assim como a ordem das etapas explicitas nos fluxogramas, foram obtidas por meio de exaustivos testes, e os resultados mais satisfatórios no sentido de maior razão sinal/ruído tem seus principais resultados expostos na sequência.

A etapa do pré-processamento, realizada por Lima (2010), foi comum a ambas metodologias, e constou dos processos mostrados na Figura 1. Para a inserção da geometria houve a análise do relatório de campo, e as principais informações encontram-se na Tabela 1.

Figura 1: Fluxograma de pré-processamento.

O dado de saída desta primeira etapa, organizado em família CMP, serviu de entrada para os empilhamentos NMO e CRS. Dessa forma, o processamento NMO foi realizado e as etapas são mostradas na Figura 2.

Informações da geometria de aquisição	
Bacia	Jequitinhonha
Linha	L2140266
Ano de aquisição	1985
Configuração	Arrasto-de-cabo
Tipo de fonte	Canhão de ar
Profundidade do cabo	9m a 11m
Profundidade da fonte	9m
Comprimento do cabo	2975m
Número de tiros	1589
Número de receptores	120
Intervalo entre tiros	25m
Intervalo entre receptores	25m
Afastamento mínimo	150m
Afastamento máximo	3125m
Tempo de registro	7.0s
Intervalo de amostragem	4ms

Tabela 1: Informações da geometria de aquisição.

Figura 2: Fluxograma do empilhamento NMO.

Os modelos de velocidade suavizados, no tempo e na profundidade, são mostrados nas Figuras 3 e 4, e foram obtidos, respectivamente, através de marcações no mapa semblance e da conversão de velocidades médiaquadráticas para intervalares.

Figura 3: Modelo de velocidade semblance no tempo.

Figura 4: Modelo de velocidade semblance convertido para profundidade.

Após a correção NMO foi feito o empilhamento NMO do dado cujo resultado é mostrado na Figura 5.

Figura 5: Seção empilhada NMO.

Nesta figura se observa que a maior parte da informação registrada corresponde a eventos rasos e com boa continuidade. No entanto se observam muitas difrações a medida que a profundidade aumenta.

Os resultados da migração Kirchhoff pós-empilhamento, no tempo e na profundidade, são mostrados nas Figuras 6 e 7, respectivamente.

Figura 6: Seção migrada Kirchhoff no tempo.

Figura 7: Seção migrada Kirchhoff na profundidade.

Analisando as Figuras 6 e 7 se observa o pequeno deslocamento das estruturas geológicas em relação à Figura 5, a recuperação da subhorizontalização das estruturas, desenhada pela melhor continuidade dos refletores, o colapso das difrações e a correção das falhas geológicas. A seção 7 possui qualidade superior do que a Figura 6 devido a recuperação de eventos em grandes profundidades e a ausência de arcos sobre os pontos difratores ("sorrisos").

O processo de densificação do dado, denominado Empilhamento CRS Parcial (Ver Figura 8), realizado inicialmente por Lima (2010) e complementado por Silva (2012), tem por saída o dado organizado em superfamílias CMP, e que é entrada para o empilhamento CRS, cujas etapas são mostradas na Figura 9.

Figura 8: Família CMP 1010 antes e depois da densificação do dado pré-empilhado.

Figura 9: Fluxograma do empilhamento CRS.

Seguindo com o fluxograma de empilhamento CRS, foram selecionados sub-produtos, como as seções CRS empilhada (ver Figura 10) e migrada (ver Figura 11) submetidas à Primeira Zona de Fresnel Projetada.

Figura 10: Seção empilhada CRS.

Figura 11: Seção CRS-migrada.

A Figura 12 mostra a migração Kirchhoff no tempo utilizando o modelo de velocidade da Figura 3 e a seção empilhada CRS otimizada da Figura 10.

Figura 12: Migração Kirchhoff usando o modelo de velocidade semblance e o empilhamento CRS.

A seção empilhada CRS apresenta melhor qualidade visual do que a NMO no sentido de realçar mais as estruturas devido à melhor continuidade dos eventos refletores e a grande quantidade de difrações. O realce da múltipla de superfície livre também é maior, como a coerência mais acentuada para os eventos de reflexão primária.

Sobre a migração CRS, se observa o colapso das difrações, a correção das falhas geológicas, a continuidade dos eventos refletores, a grande quantidade de granulações, a ausência de arcos sobre os pontos difratores ("sorrisos") e a atenuação da múltipla de superfície livre.

A migração Kirchhoff no tempo, utilizando o modelo de velocidade semblance, e a seção empilhada CRS mostra muitas difrações e uma grande quantidade de arcos acima dos pontos difratores ("sorrisos"), principalmente para eventos em grandes profundidades, demonstrando a baixa qualidade da seção e a incoerência da metodologia.

Na inversão tomográfica da onda NIP, cujo fluxograma está mostrado na Figura 13, foram feitas 2970 marcações no domínio (τ_0, ξ_0) sobre os eventos de reflexões primárias da seção empilhada CRS (ver Figura 14).

Figura 13: Fluxograma da inversão niptomográfica.

Figura 14: Mapa das 2970 marcações feitas sobre a seção empilhada CRS.

A Figura 15 mostra a minimização da função custo em função do número de iterações, onde se observa a redução do valor do desajuste entre os parâmetros dos dados de entrada e do modelo.

Figura 15: Minimização da função desajuste em função do número de iterações.

Os modelos de velocidade niptomográfico inicial e final, são mostrados, respectivamente, nas Figuras 16 e 17, onde se observa a grande evolução do modelo final.

Figura 16: Modelo de velocidade niptomográfico inicial.

Figura 17: Modelo de velocidade niptomográfico final.

Utilizando o modelo da Figura 17 foi realizada a migração Kirchhoff em profundidade, e o resultado é mostrado na Figura 18.

Figura 18: Seção migrada Kirchhoff na profundidade.

O modelo de velocidade niptomográfico, além de possuir grande semelhança com o modelo de velocidade semblance (ver Figura 4), mostra com melhor definição o fundo oceânico, a distribuição dos valores de maiores velocidades nas regiões mais profundas da seção geológica e as curvas de nível com os diferentes contrastes de velocidade.

Na migração Kirchhoff se observa o colapso das difrações nas regiões mais profundas da bacia e a ausência de arcos acima dos pontos difratores ("sorrisos").

DISCUSSÃO E CONCLUSÕES

As conclusões sobre os resultados dos empilhamentos NMO e CRS, da inversão niptomográfica e da migração Kirchhoff, são claramente mostrando dificuldades e limitações sérias, bem como casos que merecem mais atenção quanto a implementação das teorias estudadas, e servem de referência para trabalhos futuros.

Do ponto de vista comparativo entre as seções obtidas, a seção empilhada CRS possui resolução vertical e horizontal superior à seção empilhada NMO, uma vez que na seção CRS se pode destinguir melhor as interfaces refletoras e por evidenciar estruturas contínuas atraves da seção, além de destacar de forma mais clara os padrões de difração. A comparação entre as seções migradas dessas duas metodologias mostra que a migração-CRS possui melhor qualidade visual e continuidade dos eventos refletores.

Com relação aos modelos de velocidade se pôde concluir que o obtido através da niptomografia possui melhor qualidade visual do que o modelo de velocidade semblance, devido sua melhor distribuição dos valores na seção geológica, evidenciando a coerência da metodologia.

A comparação entre os resultados da migração Kirchhoff na profundidade mostra que a seção obtida utilizando o modelo de velocidade niptomográfico possui qualidade superior à respectiva seção obtida através do modelo de velocidade semblance, uma vez que há grande diferença na continuidade dos eventos refletores e no colapso das difrações.

Como sugestões para trabalhos futuros, se propõe a aplicação de outras técnicas de migração pós-empilhamento na profundidade baseadas na equação da onda acústica, como as metodologias PSPI (*Phase-Shift Plus Interpolation*), SS (*Split-Step*), RTM (*Reverse Time Migration*), e FFD (*Fourier Finite Difference*), para efeito de comparação com a migração Kirchhoff, e a generalização dos resultados obtidos com as técnicas CRS e niptomográfica para o caso 3D.

AGRADECIMENTOS

REFERÊNCIAS

- Baykulov, M., and Gajewski, D., 2008, Prestack seismic data enhancement with partial common reflection surface (crs) stack: Wave Inversion Technology, , no. 1, 57–73.
- Baykulov, M., 2008, Partial crs stack user's manual: University of Hamburg.
- Duveneck, E., 2004, Tomographic determination of seismic velocity models with kinematic wavefield attributes: Universität Karlsruhe.
- Forel, D., Benz, T., and Pennington, W. D., 2005, Seismic data processing with seismic un*x - a 2d seismic data processing primer:, volume 12 Society of Exploration Geophysicists.
- Lima, H. M., 2010, Processamento e imageamento de dados sísmicos marinhos: Universidade Federal do Pará.
- Mann, J., 2002, Extensions and applications of the common-reflection-surface stack method: Universität Karlsruhe.
- Mann, J., 2003, 2-d commom-reflection-surface stack user's manual: Universität Karlsruhe.
- Müller, T., 1999, The commom reflection surface method - seismic imaging without explicit knowledge of the velocity model: Universität Karlsruhe.
- Silva, D. A. B., 2012, Processamento, inversão e imageamento de dados sísmicos marinhos: Universidade Federal do Pará.
- Yilmaz, O., 1988, Seismic data processing:, volume 2 Society of Exploration Geophysicists.